数据挖掘与机器学习:从统计基础到Python实践
需积分: 3 111 浏览量
更新于2024-08-09
收藏 4.91MB PDF 举报
"四分位数极差-人脸识别图像预处理技术"
在数据挖掘和机器学习领域,数据预处理是一个至关重要的步骤,特别是在处理像人脸识别这样的图像数据时。四分位数极差(Interquartile Range, IQR)是一种统计学中的度量,用于描述数据分布的离散程度,特别适用于处理异常值或极端值的情况。在图像预处理中,IQR可以用于标准化或归一化像素值,使得不同图像之间的对比度更加一致。
四分位数极差计算方法如下:
1. 首先,将一组数据从小到大排列。
2. 然后,找到这组数据的下四分位数(Q1),即数据集中处于中间位置的25%数值的上限。
3. 接着,找到上四分位数(Q3),即数据集中处于中间位置的75%数值的下限。
4. 最后,IQR = Q3 - Q1,这个差值就是数据的四分位数极差。
在人脸识别图像预处理中,IQR可以用于调整像素强度的分布,去除异常值,使得图像的亮度和对比度更加均匀。这有助于提高后续特征提取和分类算法的性能。例如,在Python中,我们可以利用NumPy库来计算IQR,并对图像数据进行标准化:
```python
import numpy as np
# 假设img_data是包含图像像素值的二维数组
q1 = np.percentile(img_data, 25)
q3 = np.percentile(img_data, 75)
iqr = q3 - q1
# 定义上下界,通常上下界为Q1-1.5*IQR和Q3+1.5*IQR,超出此范围的值被视为异常
lower_bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr
# 将像素值调整到[0, 1]范围内
img_data = np.clip(img_data, lower_bound, upper_bound) / (upper_bound - lower_bound)
```
除了四分位数极差,数据预处理还包括其他方法,如z-score标准化、最小-最大缩放等。这些方法的目标都是为了消除数据的尺度影响,使得不同特征在同一水平上比较。
在上述文档中,作者Xuejun Yang提供了关于数据挖掘和机器学习的广泛概述,涵盖了从统计基础、监督学习(如KNN、决策树、朴素贝叶斯、逻辑回归、SVM)到非监督学习(如K-means聚类)、数据预处理(包括Python实现)以及数据结构和算法等方面的知识。通过学习这些内容,可以构建强大的数据处理和预测模型,包括在人脸识别任务中的应用。
2022-07-13 上传
2019-09-10 上传
2024-06-27 上传
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
2024-12-31 上传
sun海涛
- 粉丝: 36
- 资源: 3840
最新资源
- js代码-对象数组去重
- mascoshopsql
- 调用系统相机录制视频并指定路径.rar
- audio-share-discord-linux:Discord屏幕共享,现在带有音频!
- Android应用源码使用ViewPager实现左右滑动翻页.zip
- GeneralLedger:总分类帐Web应用程序
- Turtle3D
- cpp代码-串行FCM算法代码
- LoveProject:。。
- image-music-box
- Android应用源码实现获取视频的缩略图(ThumbnailUtils),并且播放.zip
- NewsApp:一个简单的本机新闻应用程序
- ruby-snippet:VSCode的ruby-snippet
- squzy:Squzy-是一款高性能的开源监视,事件和警报系统,使用Bazel和love用Golang编写
- 奇异值分解实现图片压缩代码【三个代码+一个实验报告】
- fpga-docker:用于构建Docker容器的工具,用于运行各种FPGA供应商提供的工具链