TensorFlow实战指南:深度学习与机器智能

需积分: 10 18 下载量 137 浏览量 更新于2024-07-19 收藏 10.82MB PDF 举报
《TensorFlow for Machine Intelligence》是一本由Sam Abrahams、Danijar Hafner、Erik Erwitt和Ariel Scarpinelli四位经验丰富的IT专业人士编写的实战指南。这本书专注于机器学习领域,特别是使用TensorFlow这一强大的开源库。TensorFlow自2015年开源以来,因其灵活性和功能强大,已被广泛应用于深度学习项目,尤其是在图像理解和自然语言处理这类典型任务中。 本书的特色在于,作者们不仅深入解析了TensorFlow的底层原理,让读者能够理解其工作机制,还提供了大量的实际代码示例,帮助读者掌握如何构建和优化深度卷积网络(Convolutional Neural Networks, CNNs)和循环神经网络(Recurrent Neural Networks, RNNs)。这些网络是现代人工智能中的核心组成部分,对于图像识别、语音识别和自然语言处理等领域具有重要作用。 书中强调了从实践中学习的重要性,读者将有机会看到如何将理论知识转化为实际项目的实施步骤。此外,作者还分享了模型部署和编程中的一些实用技巧,包括性能调优、模型压缩以及如何有效地将模型部署到生产环境,这些都是开发者在实际工作中不可或缺的技能。 版权方面,书本受到严格的版权保护,未经出版商Bleeding Edge Press许可,任何部分内容都不能复制或传播。尽管如此,作者们提供此书的目的是为了推动机器学习领域的知识共享,帮助读者提升技能。 《TensorFlow for Machine Intelligence》的出版,体现了作者们对机器学习的热情和专业素养,同时也为读者提供了一个系统的学习框架,无论是初学者还是进阶者,都能从中获益匪浅。通过阅读这本书,读者将不仅能掌握TensorFlow的使用,还能了解到如何在这个快速发展的领域中创新和应用机器学习技术。
2016-08-12 上传
TensorFlow For Machine Intelligence: A hands-on introduction to learning algorithms by Sam Abrahams English | 23 July 2016 | ASIN: B01IZ43JV4 | 322 Pages | AZW3/MOBI/EPUB/PDF (conv) | 26.87 MB This book is a hands-on introduction to learning algorithms. It is for people who may know a little machine learning (or not) and who may have heard about TensorFlow, but found the documentation too daunting to approach. The learning curve is gentle and you always have some code to illustrate the math step-by-step. TensorFlow, a popular library for machine learning, embraces the innovation and community-engagement of open source, but has the support, guidance, and stability of a large corporation. Because of its multitude of strengths, TensorFlow is appropriate for individuals and businesses ranging from startups to companies as large as, well, Google. TensorFlow is currently being used for natural language processing, artificial intelligence, computer vision, and predictive analytics. TensorFlow, open sourced to the public by Google in November 2015, was made to be flexible, efficient, extensible, and portable. Computers of any shape and size can run it, from smartphones all the way up to huge computing clusters. This book starts with the absolute basics of TensorFlow. We found that most tutorials on TensorFlow start by attempting to teach both machine learning concepts and TensorFlow terminology at the same time. Here we first make sure you've had the opportunity to become comfortable with TensorFlow's mechanics and core API before covering machine learning concepts.