同济大学线性代数四版习题答案详解:逆序数与行列式计算

需积分: 33 9 下载量 81 浏览量 更新于2024-08-02 收藏 619KB PDF 举报
线性代数是数学中的一个重要分支,尤其在工程、物理、计算机科学等领域有着广泛的应用。《线性代数(同济大学第四版)》是一本针对该领域的教材,它提供了详尽的理论知识和丰富的习题解答。书中内容涵盖了行列式、矩阵及其运算、矩阵的初等变换与线性方程组、向量组的线性相关性以及相似矩阵及二次型等多个核心概念。 在第一章行列式部分,作者黄正华强调了课后习题的重要性,特别推荐学生深入研究5.2、5.5、7和8.2等题目,这些习题涉及到行列式的计算技巧和性质。例如,通过实例解析了如何利用对角线法则来计算不同类型的三阶行列式,如含有数值、字母和变量的矩阵。例如,一个三阶行列式的计算过程展示了如何通过元素的乘积和加减操作来简化计算,如(1)题目的解法就是应用行列式的乘法和分配律。 第二章至第五章分别探讨了矩阵的深入理论,包括矩阵的加法、乘法、转置以及它们在解决线性方程组和理解矩阵的秩、特征值与特征向量中的作用。矩阵的初等变换被用来理解线性方程组的解空间,而向量组的线性相关性则涉及到了基和维数的概念。相似矩阵的研究则揭示了矩阵变换的本质,而二次型则进一步扩展了矩阵在二次形式和内积空间中的应用。 在学习过程中,习题是理解和掌握线性代数的关键。每一章都配有大量习题供读者练习,旨在帮助读者巩固理论并培养解决问题的能力。例如,2.2题要求按照自然数的顺序计算排列的逆序数,这是对排列理论的基础应用,有助于理解排列的对称性和顺序依赖性。 《线性代数(同济大学第四版)》不仅提供了一套全面的教学内容,而且通过丰富的习题解答,引导学生深入探究线性代数的理论和实际应用,对于希望在这个领域深造或从事相关工作的读者来说,是一本不可或缺的参考资料。如果你在学习过程中遇到困难,黄正华的邮箱huangzh@whu.edu.cn可以作为寻求帮助的渠道。