ZigBee技术入门:从基础知识到应用开发

5星 · 超过95%的资源 需积分: 16 11 下载量 105 浏览量 更新于2024-07-26 收藏 2.27MB PDF 举报
"ZIGBEE视频教程教材.pdf" 这本ZigBee视频教程教材是针对初学者和开发者的一份详尽指南,旨在介绍ZigBee技术的各个方面。ZigBee是一种低功耗、低数据速率的无线通信技术,广泛应用于物联网(IoT)中的传感器和控制网络。教材由锋硕电子科技有限公司编写,基于德州仪器(TI)的CC2530射频单片机芯片进行应用开发指导。 在第一章中,教程首先介绍了ZigBee的定义,这是一种基于IEEE 802.15.4标准的通信协议。这一章详细阐述了IEEE 802.15.4标准的基本概览,包括其物理层和数据链路层的特性。接着,教程深入讲解了ZigBee协议的体系结构,包括ZigBee联盟制定的不同层次的协议栈。 第二章详细阐述了ZigBee的基本概念。这里提到了三种主要的设备类型:协调器、路由器和终端设备,它们在ZigBee网络中的角色和功能。此外,还讨论了协议栈规范,以及网络的拓扑结构,包括星型、网状和树形结构。本章还涵盖了信标和非信标模式,这两种不同的网络操作模式。地址部分讲解了网络地址的分配、寻址机制,以及几种重要的设备地址。最后,教程对ZigBee的一些关键术语进行了定义,如属性、群集、设备描述、端点、节点,以及绑定和路由的概念。 第三章探讨了Z-Stack协议栈的整体设计,包括任务初始化、任务调度、时间管理和原语通信。这些内容对于理解ZigBee网络如何运行至关重要。 第四章则转向开发工具的安装和使用,包括IAR集成开发环境的安装、ZigBee 2007协议栈的设置,以及下载器硬件连接和驱动程序的安装步骤,这些都是实际开发过程中必不可少的环节。 第五章详细介绍了用于开发的硬件组件,包括协调器节点、路由器节点和终端设备的特性,以及如何利用它们构建ZigBee网络。此外,还提到了外部接口,这可能指的是将ZigBee设备与其他系统或设备连接的方式。 第六章及以上未提供的内容,很可能是关于如何使用开发套件进行实际编程和调试的实践指导,包括创建网络、发送和接收数据、配置设备参数等。 这份ZigBee视频教程教材为学习者提供了一个全面的起点,不仅讲解了ZigBee技术的基础理论,还提供了实际开发所需的技术支持和工具使用方法。通过深入学习,读者能够掌握构建和管理ZigBee网络的技能,从而在IoT领域中实现各种应用。
2018-01-06 上传
The world generates data at an increasing pace. Consumers, sensors, or scienti c experiments emit data points every day. In nance, business, administration and the natural or social sciences, working with data can make up a signi cant part of the job. Being able to ef ciently work with small or large datasets has become a valuable skill. Python started as a general purpose language. Around ten years ago, in 2006, the rst version of NumPy was released, which made Python a rst class language for numerical computing and laid the foundation for a prospering development, which led to what we today call the PyData ecosystem: A growing set of high- performance libraries to be used in the sciences, nance, business or anywhere else you want to work ef ciently with datasets. Python is not only about data analysis. The list of industrial-strength libraries for many general computing tasks is long, which makes working with data in Python even more compelling. Social media and the Internet of Things have resulted in an avalanche of data. The data is powerful but not in its raw form; it needs to be processed and modeled and Python is one of the most robust tools we have out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Learning to predict who would win, lose, buy, lie, or die with Python is an indispensable skill set to have in this data age. This course is your guide to get started with Predictive Analytics using Python as the tool. Data visualization is intended to provide information clearly and help the viewer understand them qualitatively. The well-known expression that a picture is worth a thousand words may be rephrased as “a picture tells a story as well as a large collection of words”. Visualization is, therefore, a very precious tool that helps the viewer understand a concept quickly. We are currently faced with a plethora of data containing many insights that hold the key to success in the modern day. It is important to nd the data, clean it, and use the right tool to visualize it. This course explains several different ways to visualize data using Python packages, along with very useful examples in many different areas such as numerical computing, nancial models, statistical and machine learning, and genetics and networks.