c++计算三维点云数据经过每个点最小路径源代码
时间: 2023-06-27 12:08:27 浏览: 102
最短路径源代码(C++实现)
这问题涉及到最短路径的算法,可以使用 Dijkstra 算法或 Floyd 算法来求解。下面是使用 Dijkstra 算法的示例代码。
假设三维点云数据是以数组形式存储的,数组名为 points,每个点的坐标分别是 points[i][0]、points[i][1]、points[i][2]。我们需要计算每个点到其他点的最小路径,可以使用一个二维数组 distances 来保存结果,distances[i][j] 表示从点 i 到点 j 的最小路径。
```
#include <iostream>
#include <vector>
#include <queue>
#include <limits>
using namespace std;
const int INF = numeric_limits<int>::max();
int dijkstra(vector<vector<int>>& graph, int start, int end) {
int n = graph.size();
vector<int> distances(n, INF);
vector<bool> visited(n, false);
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<>> pq;
distances[start] = 0;
pq.push({0, start});
while (!pq.empty()) {
auto [dist, node] = pq.top();
pq.pop();
if (visited[node]) {
continue;
}
visited[node] = true;
for (int i = 0; i < n; ++i) {
if (graph[node][i] != INF && !visited[i]) {
int new_dist = dist + graph[node][i];
if (new_dist < distances[i]) {
distances[i] = new_dist;
pq.push({new_dist, i});
}
}
}
}
return distances[end];
}
int main() {
int n;
cin >> n;
vector<vector<int>> points(n, vector<int>(3));
for (int i = 0; i < n; ++i) {
cin >> points[i][0] >> points[i][1] >> points[i][2];
}
vector<vector<int>> graph(n, vector<int>(n, INF));
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (i != j) {
int dx = points[i][0] - points[j][0];
int dy = points[i][1] - points[j][1];
int dz = points[i][2] - points[j][2];
int dist = dx * dx + dy * dy + dz * dz;
graph[i][j] = dist;
}
}
}
vector<vector<int>> distances(n, vector<int>(n, INF));
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (i != j) {
distances[i][j] = dijkstra(graph, i, j);
}
}
}
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
cout << distances[i][j] << " ";
}
cout << endl;
}
return 0;
}
```
上面的代码中,我们先读入点云数据,然后计算任意两个点之间的距离,并使用 Dijkstra 算法计算出每个点到其他点的最小路径。最后将结果保存在 distances 数组中并输出。
阅读全文