half_kernel = ceil(size(kernel) ./ 2); if(numel(sz) == 3 && numel(half_kernel) == 2) half_kernel(3) = 0; end什么意思
时间: 2024-01-31 19:02:46 浏览: 68
这是一段MATLAB(或Octave)代码,它的功能是计算卷积核的中心坐标。下面是对代码的解释:
1. `size(kernel)` 返回卷积核的大小,例如 [3, 3] 或 [5, 5]。
2. `ceil(size(kernel) ./ 2)` 计算卷积核大小的一半,向上取整。例如,如果卷积核大小是 [3, 3],则计算得到 [2, 2];如果卷积核大小是 [5, 5],则计算得到 [3, 3]。
3. `numel(sz) == 3 && numel(half_kernel) == 2` 是一个条件语句,用于检查输入的 `sz` 是否为三维数组以及 `half_kernel` 是否为二维数组。如果是,则执行下一行代码;如果不是,则跳过下一行代码。
4. `half_kernel(3) = 0` 将 `half_kernel` 的第三个元素设置为 0。这是因为在三维卷积中,卷积核的中心坐标是一个三维向量,其中第三维的值为 0。
最终,这段代码的作用是计算卷积核的中心坐标。如果卷积核是二维的,则返回一个包含两个元素的向量,表示卷积核在 x 和 y 方向上的中心坐标;如果卷积核是三维的,则返回一个包含三个元素的向量,表示卷积核在 x、y 和 z 方向上的中心坐标。
相关问题
def init(self, dim, num_heads, kernel_size=3, padding=1, stride=1, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().init() head_dim = dim // num_heads self.num_heads = num_heads self.kernel_size = kernel_size self.padding = padding self.stride = stride self.scale = qk_scale or head_dim**-0.5 self.v = nn.Linear(dim, dim, bias=qkv_bias) self.attn = nn.Linear(dim, kernel_size**4 * num_heads) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.unfold = nn.Unfold(kernel_size=kernel_size, padding=padding, stride=stride) self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True) def forward(self, x): B, H, W, C = x.shape v = self.v(x).permute(0, 3, 1, 2) h, w = math.ceil(H / self.stride), math.ceil(W / self.stride) v = self.unfold(v).reshape(B, self.num_heads, C // self.num_heads, self.kernel_size * self.kernel_size, h * w).permute(0, 1, 4, 3, 2) # B,H,N,kxk,C/H attn = self.pool(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) attn = self.attn(attn).reshape( B, h * w, self.num_heads, self.kernel_size * self.kernel_size, self.kernel_size * self.kernel_size).permute(0, 2, 1, 3, 4) # B,H,N,kxk,kxk attn = attn * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).permute(0, 1, 4, 3, 2).reshape( B, C * self.kernel_size * self.kernel_size, h * w) x = F.fold(x, output_size=(H, W), kernel_size=self.kernel_size, padding=self.padding, stride=self.stride) x = self.proj(x.permute(0, 2, 3, 1)) x = self.proj_drop(x) return x
这段代码是一个PyTorch中的类的初始化函数,用于定义一个多头注意力机制的模型。其中,dim表示输入特征的维度,num_heads表示头的数量,kernel_size表示卷积核的大小,padding表示填充的大小,stride表示步长,qkv_bias表示是否使用偏置,qk_scale表示缩放因子,attn_drop表示注意力机制的dropout率,proj_drop表示输出的dropout率。在初始化函数中,定义了多个PyTorch中的层,包括线性层、卷积层、dropout层等。在forward函数中,首先对输入特征进行线性变换,然后将结果进行reshape和permute操作,得到多头注意力机制的输入。
class NLayerDiscriminator(nn.Module): def init(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).init() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d kw = 4 padw = int(np.ceil((kw - 1) / 2)) sequence = [ nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True) ] nf_mult = 1 for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) if n == 1: num_filters = ndf * nf_mult self.conv1 = nn.Conv2d(4 * num_filters, num_filters, kernel_size=3, padding=1) self.conv_offset1 = nn.Conv2d(512, 18, kernel_size=3, stride=1, padding=1) init_offset1 = torch.Tensor(np.zeros([18, 512, 3, 3])) self.conv_offset1.weight = torch.nn.Parameter(init_offset1) self.conv_mask1 = nn.Conv2d(512, 9, kernel_size=3, stride=1, padding=1) init_mask1 = torch.Tensor(np.zeros([9, 512, 3, 3]) + np.array([0.5])) self.conv_mask1.weight = torch.nn.Parameter(init_mask1) sequence += [ torchvision.ops.DeformConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ torchvision.ops.DeformConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw) ] if use_sigmoid: sequence += [nn.Sigmoid()] self.model = nn.Sequential(*sequence) def forward(self, input): offset1 = self.conv_offset1(input) mask1 = self.conv_mask1(input) input = torch.cat([input, offset1, mask1], dim=1) return self.model(input),运行上述代码出现错误:RuntimeError: Given groups=1, weight of size [18, 512, 3, 3], expected input[1, 3, 512, 512] to have 512 channels, but got 3 channels instead,如何修改,给出代码
根据错误提示,可以发现是因为 `conv_offset1` 的输入通道数为 512,但是 `input` 的通道数为 3。因此需要将 `conv_offset1` 的输入通道数修改为 3。同时,根据代码中的注释,`num_filters` 应该为 `ndf * nf_mult_prev`,因此需要将 `num_filters` 的计算公式修改为 `ndf * nf_mult_prev * 4`。修改后的代码如下:
```
class NLayerDiscriminator(nn.Module):
def __init__(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True):
super(NLayerDiscriminator, self).__init__()
self.use_parallel = use_parallel
if type(norm_layer) == functools.partial:
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
kw = 4
padw = int(np.ceil((kw - 1) / 2))
sequence = [
nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
nn.LeakyReLU(0.2, True)
]
nf_mult = 1
for n in range(1, n_layers):
nf_mult_prev = nf_mult
nf_mult = min(2 ** n, 8)
if n == 1:
num_filters = ndf * nf_mult_prev * 4
self.conv1 = nn.Conv2d(num_filters, num_filters, kernel_size=3, padding=1)
self.conv_offset1 = nn.Conv2d(3, 18, kernel_size=3, stride=1, padding=1)
init_offset1 = torch.Tensor(np.zeros([18, 3, 3, 3]))
self.conv_offset1.weight = torch.nn.Parameter(init_offset1)
self.conv_mask1 = nn.Conv2d(3, 9, kernel_size=3, stride=1, padding=1)
init_mask1 = torch.Tensor(np.zeros([9, 3, 3, 3]) + np.array([0.5]))
self.conv_mask1.weight = torch.nn.Parameter(init_mask1)
sequence += [
torchvision.ops.DeformConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
norm_layer(ndf * nf_mult),
nn.LeakyReLU(0.2, True)
]
nf_mult_prev = nf_mult
nf_mult = min(2 ** n_layers, 8)
sequence += [
torchvision.ops.DeformConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
norm_layer(ndf * nf_mult),
nn.LeakyReLU(0.2, True),
nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)
]
if use_sigmoid:
sequence += [nn.Sigmoid()]
self.model = nn.Sequential(*sequence)
def forward(self, input):
offset1 = self.conv_offset1(input)
mask1 = self.conv_mask1(input)
input = torch.cat([input, offset1, mask1], dim=1)
return self.model(input)
```
阅读全文