差分隐私java_差分隐私-Laplace机制(后附指数和laplace的java和python实现)
时间: 2024-02-06 10:02:47 浏览: 124
基于差分隐私的权重社会网络隐私保护
_salary DECIMAL(10,2);
DECLARE allowance DECIMAL(10,2);
SELECT s.basic_salary, s.post_salary, s差分隐私是一种在保护数据隐私的同时,允许对数据进行分析的技术。Lap.allowance INTO basic_salary, post_salary, allowance
FROM salary s
WHERE s.employee_id = employee_id;
RETURN basiclace机制是差分隐私中常用的一种噪声添加方法,可以在查询中添加噪声以保护_salary + post_salary + allowance;
END;
```
4. 计算部门的平均工资的存储函数
```
CREATE FUNCTION `get_department_avg_salary`(department_id INT) RETURNS DECIMAL(10,2)
BEGIN
DECLARE total_salary DECIMAL查询结果的隐私。
Java实现Laplace机制:
```java
import java.util.Random;
public class LaplaceMechanism(10,2);
DECLARE employee_count INT;
SELECT SUM(s.basic_salary + s.post_salary + s.allowance), COUNT(e.id {
/**
* @param epsilon 隐私预算
* @param sensitivity 敏感度
* @param value 原始) INTO total_salary, employee_count
FROM employee e
LEFT JOIN salary s ON e.id = s.employee_id
WHERE e查询结果
* @return 添加拉普拉斯噪声后的查询结果
*/
public static double addNoise(double epsilon.department_id = department_id;
RETURN total_salary / employee_count;
END;
```
5. 查询所有职工的总工资, double sensitivity, double value) {
Random rand = new Random();
double u = rand.nextDouble() - 0.5;
double laplaceNoise = -sensitivity / epsilon * Math.signum(u) * Math.log(1 - 2 * Math.abs(u));
和平均工资的存储过程
```
CREATE PROCEDURE `get_employee_salary_statistic`()
BEGIN
SELECT SUM return value + laplaceNoise;
}
}
```
Python实现Laplace机制:
```python
import random
import(s.basic_salary + s.post_salary + s.allowance) AS total_salary, AVG(s.basic_salary + s.post_salary + s.allowance) AS avg_salary
FROM salary s;
END;
```
阅读全文