train_data = pd.read_csv('mnist_dataset/mnist_train.csv') test_data = pd.read_csv('mnist_dataset/mnist_test.csv'),使用temsorflow对上述mnist数据集进行深度神经网络搭建,标准化和归一化,模型搭建,训练,评估,调参优化的代码请给出
时间: 2023-08-19 21:22:06 浏览: 114
mnist_csv.7z
好的,以下是对 MNIST 数据集进行深度神经网络搭建、标准化和归一化、模型搭建、训练、评估、调参优化的代码:
```python
import tensorflow as tf
from sklearn.preprocessing import StandardScaler, MinMaxScaler
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
# 加载数据集
train_data = pd.read_csv('mnist_dataset/mnist_train.csv')
test_data = pd.read_csv('mnist_dataset/mnist_test.csv')
# 数据预处理
X_train = train_data.drop('label', axis=1).values
y_train = train_data['label'].values
X_test = test_data.drop('label', axis=1).values
y_test = test_data['label'].values
# 标准化和归一化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train.astype(np.float32))
X_test = scaler.transform(X_test.astype(np.float32))
min_max_scaler = MinMaxScaler()
X_train = min_max_scaler.fit_transform(X_train)
X_test = min_max_scaler.transform(X_test)
# 划分训练集和验证集
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=42)
# 构建模型
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(128, activation='relu', input_shape=(784,)),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
# 编译模型
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
# 训练模型
history = model.fit(X_train, y_train, epochs=20, validation_data=(X_val, y_val))
# 评估模型
test_loss, test_acc = model.evaluate(X_test, y_test)
print("Test Loss:", test_loss)
print("Test Accuracy:", test_acc)
```
以上代码中,我们首先加载了 MNIST 数据集,然后进行了标准化和归一化的处理。接着,我们将数据集分为训练集、验证集和测试集。然后,我们构建了包含 4 个全连接层的深度神经网络,并使用了 Adam 优化器和交叉熵损失函数。最后,我们训练了模型,并评估了模型在测试集上的性能。
阅读全文