c++利用递归函数实现奇数的乘积

时间: 2023-07-30 20:06:50 浏览: 123
好的,以下是利用递归函数实现奇数的乘积的 C++ 代码示例: ```c++ #include <iostream> using namespace std; int odd_product(int n) { if (n == 1) { return 1; } else if (n % 2 == 0) { return odd_product(n-1); } else { return n * odd_product(n-2); } } int main() { int n; cout << "请输入一个正整数n:"; cin >> n; cout << "1到" << n << "中所有奇数的乘积为:" << odd_product(n) << endl; return 0; } ``` 这个程序首先定义了一个名为odd_product的递归函数,它的参数是一个整数n,函数返回1到n中所有奇数的乘积。函数的基本思路与之前的 Python 示例相同。 接下来,在主函数中,程序提示用户输入一个正整数n,调用odd_product函数计算1到n中所有奇数的乘积,并输出结果。 例如,如果我们输入n=5,程序将会输出:1到5中所有奇数的乘积为:15。
相关问题

2. (简答题, 5分) 使用递归函数实现奇数数列1,3,5,7,。。。的累乘积 1)分析出递推公式。 2)按照编写递归函数的3板斧实现递归函数。 3)在main函数中调用递归函数,求出前5项数列的累乘积。 4)参考教材166页,画出函数调用的实参和返回值。

2. (简答题) (1) **递推公式**:奇数数列1, 3, 5, 7,...的累乘积可以使用数学归纳法来确定。对于第n个奇数,它是前一个奇数乘以2再加1,即`an = 2 * (an-1) + 1`。初始条件是`a1 = 1`。累乘积公式为`product(n) = product(n-1) * an`。 (2) **递归函数**实现(3板斧): ```c++ // 基本情况:n=1时,累乘积就是1 int factorial_odd(int n, int product = 1) { // 递归条件:n>1时,累乘积为前一项的倍数加一 if (n > 1) { product *= 2; product += 1; } // 返回当前n的累乘积,同时传递下一项的计算结果给下一次调用 return n == 1 ? product : factorial_odd(n - 1, product); } ``` (3) **main函数调用**: ```c++ #include <iostream> int main() { int result = factorial_odd(5); // 求前5项的累乘积 std::cout << "前5项的累乘积是: " << result << std::endl; return 0; } ``` (4) **函数调用图**: 当调用`factorial_odd(5)`时,实际上是这样的递归链条:`factorial_odd(5) -> factorial_odd(4) -> ... -> factorial_odd(1)`。每一层递归调用都会将`product`更新为当前奇数乘以前一层的`product`,直到达到基本情况`n=1`。每次返回时,`product`都会携带下一级的累乘积。

使用STL如何利用递归乘算法计算 x*y,请写出所有的递归计算。其中,x=1234, y=5678

同样地,我们可以使用递归乘算法来计算 x*y。具体来说,可以按照以下步骤进行: 1. 如果 y=0,则返回0。 2. 如果 y 是偶数,则返回 `2*recursive_multiply(x, y/2)`。 3. 如果 y 是奇数,则返回 x + `2*recursive_multiply(x, y/2)`。 其中,`recursive_multiply()`函数使用递归乘算法来计算两个数的乘积。 利用上述递归规则,可以按照如下步骤计算 1234*5678: ```c++ #include <iostream> // 使用递归乘算法计算乘积 long long recursive_multiply(long long x, long long y) { if (y == 0) { return 0; } else if (y % 2 == 0) { long long half_mul = recursive_multiply(x, y/2); return half_mul + half_mul; } else { long long half_mul = recursive_multiply(x, y/2); return x + half_mul + half_mul; } } int main() { long long x = 1234; long long y = 5678; long long result = recursive_multiply(x, y); std::cout << x << "*" << y << " = " << result << std::endl; return 0; } ``` 输出结果为: ``` 1234*5678 = 7006652 ``` 因此,我们可以使用递归乘算法和STL来计算乘积。
阅读全文

相关推荐

大家在看

recommend-type

840D的PLC功能块FB2和FB3读写NC系统变量

840D的PLC功能块FB2和FB3读写NC系统变量
recommend-type

看nova-scheduler如何选择计算节点-每天5分钟玩转OpenStack

本节重点介绍nova-scheduler的调度机制和实现方法:即解决如何选择在哪个计算节点上启动instance的问题。创建Instance时,用户会提出资源需求,例如CPU、内存、磁盘各需要多少。OpenStack将这些需求定义在flavor中,用户只需要指定用哪个flavor就可以了。可用的flavor在System->Flavors中管理。Flavor主要定义了VCPU,RAM,DISK和Metadata这四类。nova-scheduler会按照flavor去选择合适的计算节点。VCPU,RAM,DISK比较好理解,而Metatdata比较有意思,我们后面会具体讨论。下面介绍nova-s
recommend-type

不平衡学习的自适应合成采样方法ADASYN附Matlab代码.zip

1.版本:matlab2014/2019a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信
recommend-type

易语言-momo/陌陌/弹幕/优雅看直播

陌陌直播弹幕解析源码。
recommend-type

机器视觉选型计算概述-不错的总结

机器视觉选型计算概述-不错的总结

最新推荐

recommend-type

python递归函数绘制分形树的方法

Python递归函数绘制分形树是一种利用编程语言展现分形几何学概念的方式。分形几何是一种研究具有自相似性质的几何形状的数学分支。在本例中,我们将使用Python的turtle模块来创建一个分形树,它由多个相似但大小不一...
recommend-type

C++递归算法实例代码

本文主要介绍了C++递归算法实例代码,着重于解决逻辑表达式的判断问题,通过递归算法实现了对逻辑表达式的计算和判断。下面是本文中涉及到的知识点: 1. 递归算法的特点:递归算法有三个特点:基本部分、递归部分和...
recommend-type

Python递归函数实例讲解

Python递归函数是一种基于函数自身调用的编程技术,它在解决问题时会将问题分解为更小的子问题,直到子问题变得足够简单,可以直接得出答案。递归通常用于处理具有相同结构的问题,如树遍历、图搜索、数学计算等。 ...
recommend-type

C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法

C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法 本文主要介绍了C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法,涉及C++二叉树的定义、遍历、统计相关操作技巧。 一、二叉树的定义 在...
recommend-type

python递归函数求n的阶乘,优缺点及递归次数设置方式

下面是一个简单的递归函数实现: ```python def calnum(num): if num != 1: csum = num * calnum(num - 1) else: csum = 1 return csum ret = calnum(5) print(ret) # 输出:120 ``` 递归函数有两个关键特性...
recommend-type

降低成本的oracle11g内网安装依赖-pdksh-5.2.14-1.i386.rpm下载

资源摘要信息: "Oracle数据库系统作为广泛使用的商业数据库管理系统,其安装过程较为复杂,涉及到多个预安装依赖包的配置。本资源提供了Oracle 11g数据库内网安装所必需的预安装依赖包——pdksh-5.2.14-1.i386.rpm,这是一种基于UNIX系统使用的命令行解释器,即Public Domain Korn Shell。对于Oracle数据库的安装,pdksh是必须的预安装组件,其作用是为Oracle安装脚本提供命令解释的环境。" Oracle数据库的安装与配置是一个复杂的过程,需要诸多组件的协同工作。在Linux环境下,尤其在内网环境中安装Oracle数据库时,可能会因为缺少某些关键的依赖包而导致安装失败。pdksh是一个自由软件版本的Korn Shell,它基于Bourne Shell,同时引入了C Shell的一些特性。由于Oracle数据库对于Shell脚本的兼容性和可靠性有较高要求,因此pdksh便成为了Oracle安装过程中不可或缺的一部分。 在进行Oracle 11g的安装时,如果没有安装pdksh,安装程序可能会报错或者无法继续。因此,确保pdksh已经被正确安装在系统上是安装Oracle的第一步。根据描述,这个特定的pdksh版本——5.2.14,是一个32位(i386架构)的rpm包,适用于基于Red Hat的Linux发行版,如CentOS、RHEL等。 运维人员在进行Oracle数据库安装时,通常需要下载并安装多个依赖包。在描述中提到,下载此依赖包的价格已被“打下来”,暗示了市场上其他来源可能提供的费用较高,这可能是因为Oracle数据库的软件和依赖包通常价格不菲。为了降低IT成本,本文档提供了实际可行的、经过测试确认可用的资源下载途径。 需要注意的是,仅仅拥有pdksh-5.2.14-1.i386.rpm文件是不够的,还要确保系统中已经安装了正确的依赖包管理工具,并且系统的软件仓库配置正确,以便于安装rpm包。在安装rpm包时,通常需要管理员权限,因此可能需要使用sudo或以root用户身份来执行安装命令。 除了pdksh之外,Oracle 11g安装可能还需要其他依赖,如系统库文件、开发工具等。如果有其他依赖需求,可以参考描述中提供的信息,点击相关者的头像,访问其提供的其他资源列表,以找到所需的相关依赖包。 总结来说,pdksh-5.2.14-1.i386.rpm包是Oracle 11g数据库内网安装过程中的关键依赖之一,它的存在对于运行Oracle安装脚本是必不可少的。当运维人员面对Oracle数据库安装时,应当检查并确保所有必需的依赖组件都已准备就绪,而本文档提供的资源将有助于降低安装成本,并确保安装过程的顺利进行。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

云计算术语全面掌握:从1+X样卷A卷中提炼精华

![云计算术语全面掌握:从1+X样卷A卷中提炼精华](https://ask.qcloudimg.com/http-save/yehe-1475574/696453895d391e6b0f0e27455ef79c8b.jpeg) # 摘要 本文全面解析了云计算的基础概念,并深入理解了云计算服务模型,包括IaaS、PaaS和SaaS的区别及其应用。文章详细探讨了云计算部署模型,包括公有云、私有云及混合云的架构优势和选择策略。同时,本文也实践应用了云计算的关键技术,如虚拟化、容器技术以及云安全策略。此外,文章探讨了云服务管理与监控的工具、最佳实践、性能监控以及合规性和可持续发展问题。最后,本文通
recommend-type

. 索读取⼀幅图像,让该图像拼接⾃身图像,分别⽤⽔ 平和垂直 2 种。要求运⾏结果弹窗以⾃⼰的名字全拼命名。

在Python中,我们可以使用PIL(Pillow)库来处理图像并实现您所描述的功能。首先,你需要安装PIL库,如果还没有安装,可以使用pip install pillow命令。以下是简单的步骤来实现这个功能: 1. 打开图像文件: ```python from PIL import Image def open_image_and_display(image_path): img = Image.open(image_path) ``` 2. 创建一个新的空白图像,用于存放拼接后的图像: ```python def create_concat_image(img, directi
recommend-type

Java基础实验教程Lab1解析

资源摘要信息:"Java Lab1实践教程" 本次提供的资源是一个名为"Lab1"的Java实验室项目,旨在帮助学习者通过实践来加深对Java编程语言的理解。从给定的文件信息来看,该项目的名称为"Lab1",它的描述同样是"Lab1",这表明这是一个基础的实验室练习,可能是用于介绍Java语言或设置一个用于后续实践的开发环境。文件列表中的"Lab1-master"表明这是一个主版本的压缩包,包含了多个文件和可能的子目录结构,用于确保完整性和便于版本控制。 ### Java知识点详细说明 #### 1. Java语言概述 Java是一种高级的、面向对象的编程语言,被广泛用于企业级应用开发。Java具有跨平台的特性,即“一次编写,到处运行”,这意味着Java程序可以在支持Java虚拟机(JVM)的任何操作系统上执行。 #### 2. Java开发环境搭建 对于一个Java实验室项目,首先需要了解如何搭建Java开发环境。通常包括以下步骤: - 安装Java开发工具包(JDK)。 - 配置环境变量(JAVA_HOME, PATH)以确保可以在命令行中使用javac和java命令。 - 使用集成开发环境(IDE),如IntelliJ IDEA, Eclipse或NetBeans,这些工具可以简化编码、调试和项目管理过程。 #### 3. Java基础语法 在Lab1中,学习者可能需要掌握一些Java的基础语法,例如: - 数据类型(基本类型和引用类型)。 - 变量的声明和初始化。 - 控制流语句,包括if-else, for, while和switch-case。 - 方法的定义和调用。 - 数组的使用。 #### 4. 面向对象编程概念 Java是一种面向对象的编程语言,Lab1项目可能会涉及到面向对象编程的基础概念,包括: - 类(Class)和对象(Object)的定义。 - 封装、继承和多态性的实现。 - 构造方法(Constructor)的作用和使用。 - 访问修饰符(如private, public)的使用,以及它们对类成员访问控制的影响。 #### 5. Java标准库使用 Java拥有一个庞大的标准库,Lab1可能会教授学习者如何使用其中的一些基础类和接口,例如: - 常用的java.lang包下的类,如String, Math等。 - 集合框架(Collections Framework),例如List, Set, Map等接口和实现类。 - 异常处理机制,包括try-catch块和异常类层次结构。 #### 6. 实验室项目实践 实践是学习编程最有效的方式之一。Lab1项目可能包含以下类型的实际练习: - 创建一个简单的Java程序,比如一个控制台计算器。 - 实现基本的数据结构和算法,如链表、排序和搜索。 - 解决特定的问题,比如输入处理和输出格式化。 #### 7. 项目组织和版本控制 "Lab1-master"文件名暗示该项目可能采用Git作为版本控制系统。在项目实践中,学习者可能需要了解: - 如何使用Git命令进行版本控制。 - 分支(Branch)的概念和合并(Merge)的策略。 - 创建和管理Pull Request来协作和审查代码。 #### 8. 代码规范和文档 良好的代码规范和文档对于保持代码的可读性和可维护性至关重要。Lab1项目可能会强调: - 遵循Java编码标准,例如命名约定、注释习惯。 - 编写文档注释(Javadoc),以便自动生成API文档。 通过Lab1项目的实践和指导,学习者能够逐步掌握Java编程语言的核心知识,并为后续更深入的学习和项目开发打下坚实的基础。