算法大全:C/C++实现与应用

需积分: 18 0 下载量 18 浏览量 更新于2024-11-19 收藏 66KB DOC 举报
算法大全是一本涵盖了多种编程语言中的算法集合,本摘要将介绍在C和C++中涉及的一些核心算法,包括数论算法、图论算法以及相关函数和过程。 1. **数论算法** - **最大公约数(GCD)**:通过递归的方式计算两个整数a和b的最大公约数,当b为0时,返回a作为结果。该函数`gcd(a, b)`的关键在于利用辗转相除法,即`gcd(b, a mod b)`。 - **最小公倍数(LCM)**:首先交换a和b的值以确保a大于或等于b,然后从a开始,每次取a和b的乘积并检查是否能被b整除,如果不能,则将结果加到a上,重复此过程直到找到能被b整除的最小值,即为LCM。 2. **素数判定算法** - **小范围内判断**:`prime(n)`函数用于判断一个小于或等于n的整数是否为质数。通过循环遍历从2到√n,如果n能被任何数整除,则n不是质数,返回false;否则,n是质数,返回true。 - **大范围素数生成与判断**:`getprime`过程用于生成50000以内的素数,并存储在数组p中。首先标记所有偶数为非质数,然后逐个检查每个奇数,如果它是质数,就标记其倍数为非质数。最后,通过`prime(x)`函数判断给定的longint x是否为素数。 3. **图论算法** - **最小生成树(Prim算法)**:`prim(v0)`是Prim算法的具体实现,其中`lowcost`和`closest`数组用于存储当前已选择节点的成本和最近邻节点。在算法中,初始化成本最低的节点v0为起点,不断选取与当前树连接成本最低的新节点,直到所有节点都被加入,形成最小生成树。 这些算法是计算机科学基础的重要组成部分,理解它们对于编写高效的程序、解决实际问题以及数据结构和算法设计至关重要。在实际应用中,算法的选择会根据问题的具体需求和性能要求来确定,学习和掌握这些基础算法将有助于提高编程能力并深入理解计算机科学原理。
2014-09-03 上传