import pandas as pd from openpyxl import Workbook # 获取主题下词语的概率分布 def get_topic_word_distribution(lda, tf_feature_names): arr = lda.transform(tf_vectorizer.transform([' '.join(tf_feature_names)])) return arr[0] # 打印主题下词语的概率分布 def print_topic_word_distribution(lda, tf_feature_names, n_top_words): dist = get_topic_word_distribution(lda, tf_feature_names) for i in range(lda.n_components): print("Topic {}: {}".format(i, ', '.join("{:.4f}".format(x) for x in dist[i]))) # 输出每个主题下词语的概率分布至Excel表格 def output_topic_word_distribution_to_excel(lda, tf_feature_names, n_top_words,filename): # 创建Excel工作簿和工作表 wb = Workbook() ws = wb.active ws.title = "Topic Word Distribution" # 添加表头 ws.cell(row=1, column=1).value = "Topic" for j in range(n_top_words): ws.cell(row=1, column=j+2).value = tf_feature_names[j] # 添加每个主题下词语的概率分布 dist = get_topic_word_distribution(lda, tf_feature_names) for i in range(lda.n_components): ws.cell(row=i+2, column=1).value = i for j in range(n_top_words): ws.cell(row=i+2, column=j+2).value = dist[i][j] # 保存Excel文件 wb.save(filename) n_top_words = 30 tf_feature_names = tf_vectorizer.get_feature_names() topic_word = print_topic_word_distribution(lda, tf_feature_names, n_top_words)报错Traceback (most recent call last): File "D:\python\lda3\data_1.py", line 157, in <module> topic_word = print_topic_word_distribution(lda, tf_feature_names, n_top_words) File "D:\python\lda3\data_1.py", line 130, in print_topic_word_distribution print("Topic {}: {}".format(i, ', '.join("{:.4f}".format(x) for x in dist[i]))) TypeError: 'numpy.float64' object is not iterable
时间: 2024-02-06 09:11:52 浏览: 130
这个错误提示是因为 `dist[i]` 是一个 `numpy.float64` 类型的对象,不是一个可迭代的对象,无法使用 `{:.4f}` 格式化它。你可以尝试修改 print_topic_word_distribution 函数中的代码,将 `dist[i]` 直接格式化为字符串即可,例如:
```
def print_topic_word_distribution(lda, tf_feature_names, n_top_words):
dist = get_topic_word_distribution(lda, tf_feature_names)
for i in range(lda.n_components):
dist_str = ', '.join("{:.4f}".format(dist[i])) # 将 dist[i] 直接格式化为字符串
print("Topic {}: {}".format(i, dist_str))
```
另外,你在调用 `print_topic_word_distribution` 函数时,似乎没有给 `topic_word` 赋值,可以直接将调用语句改为 `print_topic_word_distribution(lda, tf_feature_names, n_top_words)` 即可。
相关问题
import pandas as pd from openpyxl import Workbook # 获取主题下词语的概率分布 def get_topic_word_distribution(lda, tf_feature_names): arr = lda.transform(tf_vectorizer.transform([' '.join(tf_feature_names)])) return arr[0] # 打印主题下词语的概率分布 def print_topic_word_distribution(lda, tf_feature_names, n_top_words,n_topics): dist = get_topic_word_distribution(lda, tf_feature_names,n_topics) for i in range(n_topics): print("Topic {}: {}".format(i, ', '.join("{:.4f}".format(x) for x in dist[i]))) # 输出每个主题下词语的概率分布至Excel表格 def output_topic_word_distribution_to_excel(lda, tf_feature_names, n_top_words, n_topics,filename): # 创建Excel工作簿和工作表 wb = Workbook() ws = wb.active ws.title = "Topic Word Distribution" # 添加表头 ws.cell(row=1, column=1).value = "Topic" for j in range(n_top_words): ws.cell(row=1, column=j+2).value = tf_feature_names[j] # 添加每个主题下词语的概率分布 dist = get_topic_word_distribution(lda, tf_feature_names, n_topics) for i in range(n_topics): ws.cell(row=i+2, column=1).value = i for j in range(n_top_words): ws.cell(row=i+2, column=j+2).value = dist[i][j] # 保存Excel文件 wb.save(filename) n_top_words = 30 tf_feature_names = tf_vectorizer.get_feature_names() topic_word = print_topic_word_distribution(lda, tf_feature_names, n_top_words, n_topics) #print_topic_word_distribution(lda, tf_feature_names, n_top_words) output_topic_word_distribution_to_excel(lda, tf_feature_names, n_top_words, n_topics, "topic_word_distribution.xlsx")报错Traceback (most recent call last): File "D:\python\lda3\data_1.py", line 157, in <module> topic_word = print_topic_word_distribution(lda, tf_feature_names, n_top_words, n_topics) File "D:\python\lda3\data_1.py", line 128, in print_topic_word_distribution dist = get_topic_word_distribution(lda, tf_feature_names,n_topics) TypeError: get_topic_word_distribution() takes 2 positional arguments but 3 were given
错误提示表明 get_topic_word_distribution() 函数只需要两个位置参数,但是在 print_topic_word_distribution() 函数中却传递了三个位置参数。检查一下代码,发现 print_topic_word_distribution() 函数中还传递了一个 n_topics 参数,它应该被移除。修改代码如下:
```
def print_topic_word_distribution(lda, tf_feature_names, n_top_words):
dist = get_topic_word_distribution(lda, tf_feature_names)
for i in range(lda.n_components):
print("Topic {}: {}".format(i, ', '.join("{:.4f}".format(x) for x in dist[i])))
def output_topic_word_distribution_to_excel(lda, tf_feature_names, n_top_words, filename):
# 创建Excel工作簿和工作表
wb = Workbook()
ws = wb.active
ws.title = "Topic Word Distribution"
# 添加表头
ws.cell(row=1, column=1).value = "Topic"
for j in range(n_top_words):
ws.cell(row=1, column=j+2).value = tf_feature_names[j]
# 添加每个主题下词语的概率分布
dist = get_topic_word_distribution(lda, tf_feature_names)
for i in range(lda.n_components):
ws.cell(row=i+2, column=1).value = i
for j in range(n_top_words):
ws.cell(row=i+2, column=j+2).value = dist[i][j]
# 保存Excel文件
wb.save(filename)
```
注意,这里需要使用 lda.n_components 属性来获取主题数,因为 lda.transform() 返回的数组的第一维的长度就等于主题数。
import pandas as pd import os import shutil import time from openpyxl import load_workbook import logging
好的,这段代码是用Python编写的一些常用库的导入语句,它们分别是:
1. `pandas`:一个强大的数据处理库,常用于数据分析和操作大型表格(DataFrame)。
2. `os`:操作系统模块,提供文件和目录操作的功能,如读取、写入文件路径,以及处理文件和目录结构。
3. `shutil`:高级文件和文件夹操作模块,支持复制、移动、删除等文件系统操作。
4. `time`:时间处理模块,可以获取当前时间、睡眠等待等,对于定时任务很有帮助。
5. `openpyxl`:一个用于读写Excel .xlsx/xlsm文件的库,主要用于处理电子表格数据。
6. `logging`:日志记录模块,用于创建和管理程序运行过程中的详细信息记录,有助于调试和错误追踪。
这段代码通常会在需要读取Excel数据并进行一些文件操作,同时需要记录日志的场景下使用。例如,可能会加载一个Excel文件到pandas DataFrame,然后对数据进行处理,期间通过`logging`记录关键步骤的信息。
阅读全文