if args.optim == 'adam': optimizer = optim.Adam(model.parameters(), lr=args.lr_init, weight_decay=args.weight_decay) elif args.optim == 'sgd': optimizer = optim.SGD(model.parameters(), lr=args.lr_init, momentum=args.momentum, weight_decay=args.weight_decay) elif args.optim == 'adamw': optimizer = optim.AdamW(model.parameters(), lr = args.lr_init, weight_decay=args.weight_decay) elif args.optim == 'adam_lars': optimizer = optim.Adam(model.parameters(), lr = args.lr_init, weight_decay=args.weight_decay) optimizer = LARC(optimizer=optimizer, eps=1e-8, trust_coefficient=0.001) elif args.optim == 'sgd_lars': optimizer = optim.SGD(model.parameters(), lr=args.lr_init, momentum=args.momentum, weight_decay=args.weight_decay) optimizer = LARC(optimizer=optimizer, eps=1e-8, trust_coefficient=0.001) elif args.optim == 'adamw_lars': optimizer = optim.AdamW(model.parameters(), lr = args.lr_init, weight_decay=args.weight_decay) optimizer = LARC(optimizer=optimizer, eps=1e-8, trust_coefficient=0.001)
时间: 2024-04-07 20:28:01 浏览: 133
这段代码是用于选择优化器的,根据 `args.optim` 的不同值,选择使用不同的优化器进行模型参数的更新。目前支持的优化器包括 Adam、SGD、AdamW,以及带有 LARS(Layer-wise Adaptive Rate Scaling)优化器的 Adam、SGD、AdamW。其中,Adam、SGD、AdamW 是常用的优化器,LARS 是一种针对深度神经网络的优化方法,它针对每一层的学习率做出不同的调整,以加速训练过程并提高模型性能。在代码中,`model.parameters()` 表示要对模型的所有参数进行优化。
相关问题
assert(args.solver in ['adam', 'sgd']) print('=> setting {} solver'.format(args.solver)) param_groups = [{'params': model.module.bias_parameters(), 'weight_decay': args.bias_decay}, {'params': model.module.weight_parameters(), 'weight_decay': args.weight_decay}] if args.solver == 'adam': optimizer = torch.optim.Adam(param_groups, args.lr, betas=(args.momentum, args.beta)) elif args.solver == 'sgd': optimizer = torch.optim.SGD(param_groups, args.lr, momentum=args.momentum)
这段代码用于选择并配置优化器(optimizer)来优化模型的参数。
首先,使用`assert`语句来确保`args.solver`的值是`'adam'`或`'sgd'`,如果不是,程序会抛出一个AssertionError。
接下来,根据`args.solver`的值选择相应的优化器,并打印出所选择的优化器。代码块中的if-elif条件语句用于根据`solver`的值来选择优化器,分别是Adam和SGD。
然后,根据模型的参数进行分组,并为每个参数组设置权重衰减(weight_decay)。这里使用了`model.module.bias_parameters()`和`model.module.weight_parameters()`来获取模型中的偏置参数和权重参数。
最后,根据选择的优化器和参数组,创建一个优化器对象,并传入学习率(args.lr),以及其他特定于优化器的参数(如Adam的betas或SGD的momentum)。
通过这段代码,可以根据命令行参数(args)选择并配置不同的优化器来训练模型。
详细解释这段代码 def init(self, args, model, env, logger): self.args = args self.device = th.device( "cuda" if th.cuda.is_available() and self.args.cuda else "cpu" ) self.logger = logger self.episodic = self.args.episodic if self.args.target: target_net = model(self.args).to(self.device) self.behaviour_net = model(self.args, target_net).to(self.device) else: self.behaviour_net = model(self.args).to(self.device) if self.args.replay: if not self.episodic: self.replay_buffer = TransReplayBuffer( int(self.args.replay_buffer_size) ) else: self.replay_buffer = EpisodeReplayBuffer( int(self.args.replay_buffer_size) ) self.env = env self.policy_optimizer = optim.RMSprop( self.behaviour_net.policy_dicts.parameters(), lr=args.policy_lrate, alpha=0.99, eps=1e-5 ) self.value_optimizer = optim.RMSprop( self.behaviour_net.value_dicts.parameters(), lr=args.value_lrate, alpha=0.99, eps=1e-5 ) if self.args.mixer: self.mixer_optimizer = optim.RMSprop( self.behaviour_net.mixer.parameters(), lr=args.mixer_lrate, alpha=0.99, eps=1e-5 ) self.init_action = th.zeros(1, self.args.agent_num, self.args.action_dim).to(self.device) self.steps = 0 self.episodes = 0 self.entr = self.args.entr
这段代码是一个类的初始化方法,接收四个参数args、model、env和logger。首先,将args、logger存储在类的属性中;然后,根据是否使用cuda,设置device属性为"cuda"或"cpu";若args中有target,则创建一个target_net模型,并将其移动到device上,同时创建一个behaviour_net模型,并将其移动到device上;否则,直接创建behaviour_net模型,并将其移动到device上。若args中有replay,则根据是否使用episodic,创建一个TransReplayBuffer或EpisodeReplayBuffer缓冲区,大小为args.replay_buffer_size;同时,将env赋值给类的env属性。接着,使用optim.RMSprop创建policy_optimizer、value_optimizer和mixer_optimizer(若args中有mixer),并分别将behaviour_net模型的policy_dicts、value_dicts和mixer参数作为优化器的参数。最后,初始化一些其他属性,如init_action、steps、episodes和entr。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)