self.state_1 = tf.placeholder(tf.float32, [None, 1, self.state_dim], 'state_1')
时间: 2024-05-29 22:14:57 浏览: 125
这行代码是在 TensorFlow 中创建一个占位符(placeholder)对象。占位符是 TensorFlow 中的一种特殊类型,它是一个空的变量,我们可以在运行 TensorFlow 会话时将数据填充到这个变量中。在这个例子中,这个占位符叫做 `state_1`,它是一个三维张量,第一维的大小是 `None`,表示它可以接受任意数量的样本;第二维的大小是 1,表示每个样本只有一个时间步;第三维的大小是 `self.state_dim`,表示每个时间步的状态向量的维度为 `self.state_dim`。这个占位符的作用是为了接受输入数据,在模型训练和预测时被用到。
相关问题
def __init__(self, sess, state_dim, learning_rate): self.sess = sess self.s_dim = state_dim self.lr_rate = learning_rate # Create the critic network self.inputs, self.out = self.create_critic_network() # Get all network parameters self.network_params = \ tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, scope='critic') # Set all network parameters self.input_network_params = [] for param in self.network_params: self.input_network_params.append( tf.compat.v1.placeholder(tf.float32, shape=param.get_shape())) self.set_network_params_op = [] for idx, param in enumerate(self.input_network_params): self.set_network_params_op.append(self.network_params[idx].assign(param)) # Network target目标 V(s) self.td_target = tf.compat.v1.placeholder(tf.float32, [None, 1]) # Temporal Difference, will also be weights for actor_gradients时间差异,也将是actor_gradients的权重 self.td = tf.subtract(self.td_target, self.out) # Mean square error均方误差 self.loss = tflearn.mean_square(self.td_target, self.out) # Compute critic gradient计算临界梯度 self.critic_gradients = tf.gradients(self.loss, self.network_params) # Optimization Op self.optimize = tf.compat.v1.train.RMSPropOptimizer(self.lr_rate). \ apply_gradients(zip(self.critic_gradients, self.network_params))请对这段代码每句进行注释
# 定义一个类,表示 Critic 网络
class CriticNetwork(object):
def __init__(self, sess, state_dim, learning_rate):
# 初始化 Critic 网络的一些参数
self.sess = sess
self.s_dim = state_dim
self.lr_rate = learning_rate
# 创建 Critic 网络
self.inputs, self.out = self.create_critic_network()
# 获取 Critic 网络中所有的参数
self.network_params = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, scope='critic')
# 定义一个占位符,表示 Critic 网络的输入参数
self.input_network_params = []
for param in self.network_params:
self.input_network_params.append(tf.compat.v1.placeholder(tf.float32, shape=param.get_shape()))
# 定义一个操作,用于设置 Critic 网络的所有参数
self.set_network_params_op = []
for idx, param in enumerate(self.input_network_params):
self.set_network_params_op.append(self.network_params[idx].assign(param))
# 定义一个占位符,表示 Critic 网络的目标输出
self.td_target = tf.compat.v1.placeholder(tf.float32, [None, 1])
# 计算 Critic 网络的 Temporal Difference
self.td = tf.subtract(self.td_target, self.out)
# 定义 Critic 网络的损失函数,使用均方误差
self.loss = tflearn.mean_square(self.td_target, self.out)
# 计算 Critic 网络的梯度
self.critic_gradients = tf.gradients(self.loss, self.network_params)
# 定义 Critic 网络的优化器
self.optimize = tf.compat.v1.train.RMSPropOptimizer(self.lr_rate).apply_gradients(zip(self.critic_gradients, self.network_params))
class PPO(object): def __init__(self): self.sess = tf.Session() self.tfs = tf.placeholder(tf.float32, [None, S_DIM], 'state') # critic with tf.variable_scope('critic'): l1 = tf.layers.dense(self.tfs, 100, tf.nn.relu) self.v = tf.layers.dense(l1, 1) self.tfdc_r = tf.placeholder(tf.float32, [None, 1], 'discounted_r') self.advantage = self.tfdc_r - self.v self.closs = tf.reduce_mean(tf.square(self.advantage)) self.ctrain_op = tf.train.AdamOptimizer(C_LR).minimize(self.closs) # actor pi, pi_params = self._build_anet('pi', trainable=True) oldpi, oldpi_params = self._build_anet('oldpi', trainable=False) with tf.variable_scope('sample_action'): self.sample_op = tf.squeeze(pi.sample(1), axis=0) # choosing action with tf.variable_scope('update_oldpi'): self.update_oldpi_op = [oldp.assign(p) for p, oldp in zip(pi_params, oldpi_params)] self.tfa = tf.placeholder(tf.float32, [None, A_DIM], 'action') self.tfadv = tf.placeholder(tf.float32, [None, 1], 'advantage') with tf.variable_scope('loss'): with tf.variable_scope('surrogate'): # ratio = tf.exp(pi.log_prob(self.tfa) - oldpi.log_prob(self.tfa)) ratio = pi.prob(self.tfa) / (oldpi.prob(self.tfa) + 1e-5) surr = ratio * self.tfadv if METHOD['name'] == 'kl_pen': self.tflam = tf.placeholder(tf.float32, None, 'lambda') kl = tf.distributions.kl_divergence(oldpi, pi) self.kl_mean = tf.reduce_mean(kl) self.aloss = -(tf.reduce_mean(surr - self.tflam * kl)) else: # clipping method, find this is better self.aloss = -tf.reduce_mean(tf.minimum( surr, tf.clip_by_value(ratio, 1.-METHOD['epsilon'], 1.+METHOD['epsilon'])*self.tfadv))
这段代码是使用 PPO(Proximal Policy Optimization)算法实现的一个 actor-critic 模型。其中,critic 用来评价当前状态的价值,actor 用来生成在当前状态下采取的动作。在训练过程中,会使用 advantage(优势值)来评价采取某个动作的好坏,并且使用 surrogate loss(代理损失)来训练 actor,同时使用 clipping 或 kl penalty 的方式来限制优势值的大小,以保证训练的稳定性。
阅读全文