for name, param in model.state_dict().items()什么意思
时间: 2024-04-27 14:20:59 浏览: 135
这行代码是用于遍历PyTorch模型的state_dict()字典中的所有参数。其中,state_dict()字典是PyTorch中用来存储模型参数的一种数据结构。该字典的键是参数的名称,值是参数的张量。for循环中的name和param分别是每个参数的名称和张量,通过这些名称和张量可以对模型的参数进行访问、修改或者保存。
相关问题
for name, param in model.state_dict().items()例子
以下是一个简单的例子,展示如何使用`for name, param in model.state_dict().items()`来遍历模型的参数:
``` python
import torch
import torch.nn as nn
# 定义一个简单的神经网络模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(10, 20)
self.fc2 = nn.Linear(20, 1)
def forward(self, x):
x = self.fc1(x)
x = torch.relu(x)
x = self.fc2(x)
return x
# 创建一个Net类的实例
model = Net()
# 遍历模型的参数,并打印参数的名称和张量大小
for name, param in model.state_dict().items():
print(name, param.size())
```
输出结果为:
```
fc1.weight torch.Size([20, 10])
fc1.bias torch.Size([20])
fc2.weight torch.Size([1, 20])
fc2.bias torch.Size([1])
```
这个例子中,我们创建了一个名为`Net`的简单神经网络模型,并创建了一个`Net`类的实例`model`。使用`for name, param in model.state_dict().items()`遍历了模型的参数,并打印了每个参数的名称和张量大小。
给下列代码加注释: def merge_accumulate_client_update(self, list_num_proc, list_state_dict, lr): total_num_proc = sum(list_num_proc) # merged_state_dict = dict() dict_keys = list_state_dict[0].keys() for state_dict in list_state_dict[1:]: assert state_dict.keys() == dict_keys # accumulate extra sgrad and remove from state_dict if self.use_adaptive and self.is_adj_round(): prefix = "extra." for state_dict in list_state_dict: del_list = [] for key, param in state_dict.items(): if key[:len(prefix)] == prefix: sgrad_key = key[len(prefix):] mask_0 = self.model.get_mask_by_name(sgrad_key) == 0. dense_sgrad = torch.zeros_like(mask_0, dtype=torch.float) dense_sgrad.masked_scatter_(mask_0, param) # no need to divide by lr self.control.accumulate(sgrad_key, dense_sgrad) del_list.append(key) for del_key in del_list: del state_dict[del_key]
```python
def merge_accumulate_client_update(self, list_num_proc, list_state_dict, lr):
total_num_proc = sum(list_num_proc)
# merged_state_dict = dict()
dict_keys = list_state_dict[0].keys()
# Check if all state dicts have the same keys
for state_dict in list_state_dict[1:]:
assert state_dict.keys() == dict_keys
# accumulate extra sgrad and remove from state_dict
if self.use_adaptive and self.is_adj_round():
prefix = "extra."
for state_dict in list_state_dict:
del_list = []
for key, param in state_dict.items():
# Check if the key starts with 'extra.'
if key[:len(prefix)] == prefix:
# Get the corresponding sgrad key
sgrad_key = key[len(prefix):]
# Create a mask of zeroes
mask_0 = self.model.get_mask_by_name(sgrad_key) == 0.
# Create a dense tensor and fill it with values from param based on the mask
dense_sgrad = torch.zeros_like(mask_0, dtype=torch.float)
dense_sgrad.masked_scatter_(mask_0, param)
# Accumulate the dense sgrad without dividing by lr
self.control.accumulate(sgrad_key, dense_sgrad)
# Add the key to the delete list
del_list.append(key)
# Remove the keys from the state_dict
for del_key in del_list:
del state_dict[del_key]
```
这段代码实现了一个`merge_accumulate_client_update`方法,主要功能是合并和累加`list_state_dict`中的状态字典。以下是对代码的注释:
- `total_num_proc`:所有进程数的总和。
- `dict_keys`:状态字典的键列表。
- 检查所有状态字典是否具有相同的键。
- 如果使用自适应且处于调整轮次,则累加额外的`sgrad`并从状态字典中删除。
- `prefix`:额外`sgrad`的前缀。
- 对于每个状态字典,遍历键和参数。
- 如果键以`prefix`开头,则获取相应的`sgrad`键。
- 创建一个零填充的掩码。
- 创建一个稠密张量,并根据掩码从参数中填充值。
- 累加不除以`lr`的稠密`sgrad`。
- 将键添加到删除列表。
- 从状态字典中删除键。
阅读全文