筛选并删除csv文件中text_acc列和update_acc列以及similarity列中的异常值
时间: 2023-06-14 11:08:37 浏览: 331
java-string-similarity-master.zip_between_stringSimilarity_text
要筛选并删除csv文件中的异常值,可以按照以下步骤进行操作:
1. 导入必要的包和库:
```python
import pandas as pd
import numpy as np
from scipy import stats
```
2. 读取csv文件:
```python
df = pd.read_csv('your_file.csv')
```
3. 筛选出需要处理的列:
```python
cols_to_filter = ['text_acc', 'update_acc', 'similarity']
```
4. 定义一个函数,用于检测和删除异常值:
```python
def remove_outliers(df, col):
z_scores = stats.zscore(df[col])
abs_z_scores = np.abs(z_scores)
filtered_entries = (abs_z_scores < 3)
return df[filtered_entries]
```
这个函数使用z-score方法检测异常值,并将绝对值大于3的值筛选出来,最后返回一个不包含异常值的DataFrame对象。
5. 对每一列分别调用remove_outliers函数来删除异常值:
```python
for col in cols_to_filter:
df = remove_outliers(df, col)
```
6. 将处理后的数据保存到文件中:
```python
df.to_csv('filtered_file.csv', index=False)
```
这个过程会将处理后的数据保存到一个新的csv文件中,原始文件不会受到影响。
最终的代码如下所示:
```python
import pandas as pd
import numpy as np
from scipy import stats
df = pd.read_csv('your_file.csv')
cols_to_filter = ['text_acc', 'update_acc', 'similarity']
def remove_outliers(df, col):
z_scores = stats.zscore(df[col])
abs_z_scores = np.abs(z_scores)
filtered_entries = (abs_z_scores < 3)
return df[filtered_entries]
for col in cols_to_filter:
df = remove_outliers(df, col)
df.to_csv('filtered_file.csv', index=False)
```
阅读全文