代码实现验证swin transformer准确度
时间: 2023-10-13 19:15:32 浏览: 146
基于swin-transformer实现小目标检测任务python源码+使用说明+数据集.zip
Swin Transformer是一种新型的Transformer模型,可以用于图像分类等任务。其准确度与其他先进的模型相当。下面是使用PyTorch实现Swin Transformer进行图像分类的代码,可以用于验证其准确度:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from swin_transformer import SwinTransformer
# 加载数据集
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=128,
shuffle=False, num_workers=2)
# 定义Swin Transformer模型
model = SwinTransformer(
img_size=32,
patch_size=4,
in_chans=3,
num_classes=10,
embed_dim=96,
depths=[2, 2, 18, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
drop_path_rate=0.2,
ape=False,
patch_norm=True,
use_checkpoint=False
)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
# 训练模型
for epoch in range(50):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# 获取输入数据
inputs, labels = data
# 清零梯度
optimizer.zero_grad()
# 前向传播、计算损失、反向传播
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 统计损失
running_loss += loss.item()
# 打印训练进度
print('[%d] loss: %.3f' %
(epoch + 1, running_loss / (len(trainloader) * trainloader.batch_size)))
# 在测试集上计算准确率
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
print('Finished Training')
```
其中,使用的是CIFAR-10数据集,训练50个epoch,学习率为0.1,动量为0.9,权重衰减为5e-4。在测试集上计算准确率。
阅读全文