cosine_sim=pairwise_distances(tfidf_matrix,metric="cosine")是什么意思
时间: 2024-04-22 16:23:53 浏览: 231
这段代码是计算一个文本集合的TF-IDF(Term Frequency-Inverse Document Frequency)矩阵中的所有文本之间的余弦相似度。其中,tfidf_matrix是一个稀疏矩阵,表示每个文本的TF-IDF值。使用pairwise_distances函数,通过指定metric参数为"cosine",计算每个文本与其他文本之间的余弦相似度并返回一个相似度矩阵。
相关问题
cosine_sim=pairwise_distances(tfidf_matrix,metric="cosine")
这是一个计算文本相似度的方法,使用了TF-IDF特征向量表示文本,然后使用余弦相似度计算文本之间的相似度。TF-IDF是一种常用的文本特征提取方法,可以将文本转换为向量形式,而余弦相似度是一种衡量向量之间相似度的方法。这段代码使用了scikit-learn库中的pairwise_distances函数来计算文本之间的余弦相似度,返回的是一个矩阵,矩阵的(i,j)位置表示第i个文本和第j个文本之间的余弦相似度。
import pandas as pd from numpy import * food=pd.read_csv('hot-spicy pot.csv') food.head(10) food['taste'].head(5) import pandas as pd from numpy import * from sklearn.feature_extraction.text import TfidfVectorizer #1.读取数据 print('Step1:read data...') food=pd.read_csv('hot-spicy pot.csv') food.head(10) #2.将菜品的描述构造成TF-IDF向量 print('Step2:make TF-IDF...') tfidf=TfidfVectorizer(stop_words='english') tfidf_matrix=tfidf.fit_transform(food['taste']) tfidf_matrix.shape #3.计算两个菜品的余弦相似度 print('Step3:compute similarity...') from sklearn.metrics.pairwise import pairwise_distances cosine_sim=pairwise_distances(tfidf_matrix,metric="cosine") #推荐函数,输出与其最相似的10个菜品 def content_based_recommendation(name,consine_sim=cosine_sim): idx=indices[name] sim_scores=list(enumerate(cosine_sim[idx])) sim_scores=sorted(sim_scores,key=lambda x:x[1]) sim_scores=sim_scores[1:11] food_indices=[i[0]for i in sim_scores] return food['name'].iloc[food_indices] #4.根据菜名及特点进行推荐 print('Step4:recommend by name...') #建立索引,方便使用菜名进行数据访问 indices=pd.Series(food.index,index=food['name']).drop_duplicates() result=content_based_recommendation("celery") result from sklearn.metrics.pairwise import pairwise_distances cosine_sim=pairwise_distances(tfidf_matrix,metric="cosine") tfidf_matrix.shape 请用中文逐行详细注释,这段代码
这段代码主要是针对热辣火锅这个菜品数据集,进行基于内容的推荐。
1. 导入所需的库
```python
import pandas as pd
from numpy import *
from sklearn.feature_extraction.text import TfidfVectorizer
```
2. 读取数据,并将菜品的描述构造成 TF-IDF 向量
```python
food=pd.read_csv('hot-spicy pot.csv')
tfidf=TfidfVectorizer(stop_words='english')
tfidf_matrix=tfidf.fit_transform(food['taste'])
```
3. 计算两个菜品的余弦相似度
```python
from sklearn.metrics.pairwise import pairwise_distances
cosine_sim=pairwise_distances(tfidf_matrix,metric="cosine")
```
4. 推荐函数,根据菜名及特点进行推荐
```python
#建立索引,方便使用菜名进行数据访问
indices=pd.Series(food.index,index=food['name']).drop_duplicates()
#推荐函数,输出与其最相似的10个菜品
def content_based_recommendation(name,consine_sim=cosine_sim):
idx=indices[name]
sim_scores=list(enumerate(cosine_sim[idx]))
sim_scores=sorted(sim_scores,key=lambda x:x[1])
sim_scores=sim_scores[1:11]
food_indices=[i[0]for i in sim_scores]
return food['name'].iloc[food_indices]
#根据菜名进行推荐,例如以"celery"为例
result=content_based_recommendation("celery")
result
```
以上就是这段代码的详细解释。在这个例子中,使用了 TF-IDF 向量来表示每个菜品的特点,然后计算出了每两个菜品之间的余弦相似度,最后根据菜品名称和特点进行推荐。
阅读全文