在VGG16中加入正则化的代码
时间: 2024-05-14 21:16:49 浏览: 71
VGG16的源代码ing
可以使用以下代码在VGG16模型的构建中加入正则化:
```python
from keras import regularizers
from keras.layers import Input, Conv2D, MaxPooling2D, Flatten, Dense
from keras.models import Model
input_shape = (224, 224, 3)
# input layer
inputs = Input(shape=input_shape)
# block 1
x = Conv2D(64, (3, 3), activation='relu', padding='same',
kernel_regularizer=regularizers.l2(0.001))(inputs)
x = Conv2D(64, (3, 3), activation='relu', padding='same',
kernel_regularizer=regularizers.l2(0.001))(x)
x = MaxPooling2D((2, 2))(x)
# block 2
x = Conv2D(128, (3, 3), activation='relu', padding='same',
kernel_regularizer=regularizers.l2(0.001))(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same',
kernel_regularizer=regularizers.l2(0.001))(x)
x = MaxPooling2D((2, 2))(x)
# block 3
x = Conv2D(256, (3, 3), activation='relu', padding='same',
kernel_regularizer=regularizers.l2(0.001))(x)
x = Conv2D(256, (3, 3), activation='relu', padding='same',
kernel_regularizer=regularizers.l2(0.001))(x)
x = Conv2D(256, (3, 3), activation='relu', padding='same',
kernel_regularizer=regularizers.l2(0.001))(x)
x = MaxPooling2D((2, 2))(x)
# block 4
x = Conv2D(512, (3, 3), activation='relu', padding='same',
kernel_regularizer=regularizers.l2(0.001))(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same',
kernel_regularizer=regularizers.l2(0.001))(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same',
kernel_regularizer=regularizers.l2(0.001))(x)
x = MaxPooling2D((2, 2))(x)
# block 5
x = Conv2D(512, (3, 3), activation='relu', padding='same',
kernel_regularizer=regularizers.l2(0.001))(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same',
kernel_regularizer=regularizers.l2(0.001))(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same',
kernel_regularizer=regularizers.l2(0.001))(x)
x = MaxPooling2D((2, 2))(x)
# fully connected layers
x = Flatten()(x)
x = Dense(4096, activation='relu', kernel_regularizer=regularizers.l2(0.001))(x)
x = Dense(4096, activation='relu', kernel_regularizer=regularizers.l2(0.001))(x)
outputs = Dense(1000, activation='softmax', kernel_regularizer=regularizers.l2(0.001))(x)
model = Model(inputs=inputs, outputs=outputs)
```
这里使用了L2正则化,它可以限制模型的权重,防止过拟合。在上述代码中,核正则化系数设置为0.001。这里在所有卷积层和全连接层中都加入了正则化,可以根据需求进行修改。
阅读全文