void delay(uint time)//延时函数 { uint i,j; for(i=0;i<254;i++) { for(j=0;j<time;j++) { ; } } }

时间: 2023-08-31 16:40:26 浏览: 438
### 回答1: 这段代码是一个简单的延时函数,它的作用是让程序暂停一段时间,以便完成某些操作。其中,time参数表示要延时的时间,单位为一个任意的时间单位,i和j是循环计数器,用于控制延时的时间长度。具体来说,这个函数会循环254次,每次内部循环j会循环time次,每次循环都不做任何事情,只是为了浪费时间。这样,当调用这个函数时,程序就会暂停一段时间,然后再继续执行后面的代码。这种方式虽然简单,但是不够精确,因为延时的时间会受到程序运行速度和计算机负载等因素的影响。在实际的项目中,建议使用更加精确的延时方式,例如使用定时器或者硬件延时等。 ### 回答2: void delay(uint time)//延时函数 { uint i,j; for(i=0;i<254;i++) { for(j=0;j<time;j++) { //空语句,即执行了一次空循环 } } } 这段代码是一个延时函数,用于实现延时time个周期。其中,i和j都是整数型变量,且初始值为0。外层循环控制延时的周期数,内层循环控制每个周期的延时。 外层循环的条件是i小于254,每次循环i自增1。内层循环的条件是j小于time,每次循环j自增1。内层循环的每次循环都是一个空循环,即什么也不做,只是为了占用一定的时间进行延时。 根据循环次数的控制,可以实现大致的延时效果。具体的延时时间和实际运行环境有关系,需要根据硬件的特性进行调整。
相关问题

void delay(uint time)//延时函数 { uint i,j; for(i=0;i<254;i++) { for(j=0;j<time;j++) { ; } } }大致多久mega16

### 回答1: 这个函数的延时时间取决于两个因素:第一个是循环次数,即外层循环执行的次数,这里是254次;第二个是内层循环中,j循环的次数,这里是time次。因此,这个函数的延时时间可以通过修改time参数来控制,单位是任意时间单位。具体来说,延时的时间可以表示为:delay_time = 254 * time / CPU_CLK,其中,CPU_CLK是CPU的时钟频率,单位是Hz。例如,如果CPU的时钟频率是16MHz,time参数是10,那么这个函数的延时时间就是2540us,即2.54ms。但是需要注意的是,这个函数的延时时间是不够精确的,因为它受到CPU负载和运行速度等影响,实际的延时时间可能会有误差。在实际的项目中,建议使用更加精确的延时方式。 ### 回答2: 这段代码是一个用于实现延时的函数,函数名为delay,参数类型为无符号整型time。 函数中有两个循环嵌套,外层循环控制延时的次数,内层循环控制每次延时的时间。 具体来说,外层循环的控制变量i初始值为0,每次循环结束后递增1,直到i的值达到254之前持续循环。 内层循环的控制变量j初始值为0,每次循环结束后递增1,直到j的值达到time之前持续循环。内层循环的目的是实现每次延时的时间。 因为循环体中没有具体的语句执行,只有一个空语句" ; ",所以内层循环每次执行完后不会有实际的操作。 由于循环体中没有具体的语句执行,所以这段代码实际上没有实现有效的延时功能。根据代码的结构,假设time的值为任意正整数,那么这段代码的执行时间很短,可以忽略不计。 所以无论time的值是多少,这段代码大致不会花费多少时间,具体时间可能会受到编译器、硬件性能等因素的影响。在mega16单片机上的实际延时时间可能是微秒级别的。 ### 回答3: 根据给出的代码,延时函数delay(uint time)的功能是产生一段时间的延时。 函数中的两层嵌套循环可以实现延时的效果。外层的循环用来控制循环次数,内层的循环用来控制每次循环的执行次数。其中,变量i用于外层循环计数,变量j用于内层循环计数。 在每次内层循环执行时,程序中没有实际的操作语句,只有一个空语句" ; "。这样的写法使得内层循环的执行时间非常短暂,可以视作一个很小的时间单位。 由于i和j都是uint类型的变量,其值在程序中没有修改的语句,因此内层和外层循环都是循环到达最大值后终止。然后,外层循环的次数参数最大为254,内层循环的次数参数为time。 具体来说,每次外层循环的执行时间为254 * 内层循环的执行时间,也就是函数的延时时间。 因此,该延时函数的延时时间大致为254 * time 的时间单位。 但是,这个延时函数的延时时间不能准确计量,因为循环的执行时间会受到单片机的工作频率和编译器优化等因素的影响。 总结起来,该延时函数约为254 * time的延时时间(单位取决于具体的单片机工作频率等因素),但是不能保证精确的延时时间。

void Delay_1ms(uint i) //1ms延时 { uchar x,j; for(j=0;j for(x=0;x<=148;x++); }

### 回答1: 这段代码是一个简单的延时函数,用于在单片机中实现延时。函数接受一个参数 i,表示需要延时的毫秒数。函数实现的原理是通过循环嵌套来实现等待一定的时间。具体来说,内层的循环会执行 148 次,每次执行时间大概是 1/12MHz = 0.0833us,因此内层循环的总执行时间是 0.0833us * 148 = 12.34us。外层的循环会执行 i 次,因此函数总共需要执行的时间是 12.34us * i。由于单片机的时钟频率可能有所不同,因此需要根据实际情况调整内层循环的执行次数,以保证延时函数的精度。 ### 回答2: void Delay_1ms(uint i) //1ms延时 { uchar x,j; for(j=0;j<i;j++) //循环i次,延时i毫秒 { for(x=0;x<=148;x++) //每次循环148次,大致相当于1毫秒的延时 { //空循环,什么都不做,只是耗时 } } } 这段代码实现了一个微秒级别的延时函数Delay_1ms,通过为指定的毫秒数乘以一个合适的常数,以实现延时的效果。具体来说,它包含了一个外层的for循环和一个内层的for循环。外层的for循环运行i次,每次循环都相当于延时1毫秒。内层的for循环运行148次,每次循环都是一个无操作的空循环,耗时大致为1毫秒。通过这种方式,不断循环计数,即可实现指定毫秒数的延时效果。 ### 回答3: void Delay_1ms(uint i) //1ms延时 { uchar x, j; // 声明两个无符号字符型变量x和j for(j=0; j<i; j++) // 外层循环i次,控制延时的总时间 { for(x=0; x<=148; x++) // 内层循环148次,实现每次循环的延时时间 { // 空循环,用于延时 } } } 以上代码是一个用于实现1ms延时的函数。函数接收一个无符号整型参数i,用于指定延时的总时间。函数内部使用两个无符号字符型变量x和j进行循环控制。 外层循环使用变量j进行控制,循环i次,每次循环的目的是延时1ms。 内层循环使用变量x进行控制,循环148次。由于通常的晶振频率为8MHz,每个机器周期为1/8MHz=0.125us,所以一次循环延时时间为148*0.125us=18.5us,大约可以实现1/18.5us约为54kHz的延时。 内层循环中的空循环,用于消耗时间,从而实现延时的目的。具体的延时时间取决于所使用的硬件平台和编译器的优化设置。 需要注意的是,以上给出的代码只是一个简单的软件延时实现方式,并且在实际应用中可能会因为硬件和编译器的差异而有所不同,因此在具体使用时需要根据实际情况进行适当的调整和优化。

相关推荐

最新推荐

recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【进阶】Python高级加密库cryptography

![【进阶】Python高级加密库cryptography](https://img-blog.csdnimg.cn/20191105183454149.jpg) # 2.1 AES加密算法 ### 2.1.1 AES加密原理 AES(高级加密标准)是一种对称块密码,由美国国家标准与技术研究院(NIST)于2001年发布。它是一种分组密码,这意味着它一次处理固定大小的数据块(通常为128位)。AES使用密钥长度为128、192或256位的迭代密码,称为Rijndael密码。 Rijndael密码基于以下基本操作: - 字节替换:将每个字节替换为S盒中的另一个字节。 - 行移位:将每一行
recommend-type

linuxjar包启动脚本

Linux中的jar包通常指的是Java Archive(Java归档文件),它是一个包含Java类、资源和其他相关文件的压缩文件。启动一个Java应用的jar包通常涉及到使用Java的Runtime或JVM(Java虚拟机)。 一个简单的Linux启动jar包的脚本(例如用bash编写)可能会类似于这样: ```bash #!/bin/bash # Java启动脚本 # 设置JAVA_HOME环境变量,指向Java安装路径 export JAVA_HOME=/path/to/your/java/jdk # jar包的路径 JAR_FILE=/path/to/your/applicat
recommend-type

Microsoft OfficeXP详解:WordXP、ExcelXP和PowerPointXP

"第四章办公自动化软件应用,重点介绍了Microsoft OfficeXP中的WordXP、ExcelXP和PowerPointXP的基本功能和应用。" 在办公自动化领域,Microsoft OfficeXP是一个不可或缺的工具,尤其对于文字处理、数据管理和演示文稿制作。该软件套装包含了多个组件,如WordXP、ExcelXP和PowerPointXP,每个组件都有其独特的功能和优势。 WordXP是OfficeXP中的核心文字处理软件,它的主要特点包括: 1. **所见即所得**:这一特性确保在屏幕上的预览效果与最终打印结果一致,包括字体、字号、颜色和表格布局等视觉元素。 2. **文字编辑**:WordXP提供基础的文字编辑功能,如选定、移动、复制和删除,同时具备自动更正和自动图文集,能即时修正输入错误,并方便存储和重复使用常用文本或图形。 3. **格式编辑**:包括字符、段落和页面的格式设置,使用户可以灵活调整文档的视觉风格,以适应不同的需求。 4. **模板、向导和样式**:模板简化了创建有固定格式文档的过程,向导引导用户完成模板填充,而样式则允许用户自定义和保存可重复使用的格式组合。 5. **图文混排**:WordXP的强大之处在于其处理图像和文本的能力,使得文档中的图片、图表和文本可以自由布局,增强了文档的表现力。 接下来,ExcelXP是电子表格软件,主要用于数据管理、计算和分析。它的主要功能包括: - 创建和编辑复杂的公式,进行数学计算和数据分析。 - 使用图表功能将数据可视化,帮助理解趋势和模式。 - 数据排序、筛选和查找功能,便于信息检索和管理。 - 表格和工作簿模板,方便用户快速生成标准格式的工作表。 最后,PowerPointXP是用于制作电子演示文稿的工具,其特性如下: - 简单易用的界面,方便用户创建引人入胜的幻灯片。 - 多样化的主题、过渡和动画效果,提升演示的视觉吸引力。 - 支持嵌入多媒体内容,如视频和音频,增强演示的交互性。 - 可以预览和控制演示流程,确保在实际展示时的流畅性。 这三款软件共同构成了OfficeXP,是办公环境中提高效率和专业性的关键工具。通过熟练掌握它们,用户可以高效地完成报告编写、数据分析和演讲准备等任务。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩