遗传模拟退火算法对流水车间调度优化,目标为最小化最大流程时间,输出甘特图和收敛图,matlab完整正确代码如何编写
时间: 2024-02-11 19:07:43 浏览: 22
遗传退火算法,含matlab算法,Matlab的模拟退火算法工具箱、代码
5星 · 资源好评率100%
以下是一个简单的遗传模拟退火算法的 Matlab 代码,用于解决流水车间调度问题。具体实现细节可以根据需求进行调整。
```matlab
%% 参数初始化
pop_size = 100; % 种群大小
max_gen = 500; % 最大迭代次数
pc = 0.8; % 交叉概率
pm = 0.1; % 变异概率
T0 = 100; % 初始温度
Tf = 1; % 终止温度
alpha = 0.99; % 降温系数
n = 10; % 工件数量
m = 5; % 机器数量
%% 随机生成初始种群
pop = zeros(pop_size, n);
for i = 1:pop_size
pop(i, :) = randperm(n);
end
%% 循环迭代
T = T0;
cost = zeros(1, max_gen);
for i = 1:max_gen
% 交叉操作
for j = 1:pop_size/2
p1 = randi(pop_size);
p2 = randi(pop_size);
while p2 == p1
p2 = randi(pop_size);
end
c1 = pop(p1, :);
c2 = pop(p2, :);
if rand() < pc
[c1, c2] = crossover(c1, c2);
end
new_pop(j*2-1, :) = c1;
new_pop(j*2, :) = c2;
end
% 变异操作
for j = 1:pop_size
c = new_pop(j, :);
if rand() < pm
c = mutation(c);
end
new_pop(j, :) = c;
end
% 选择操作
pop = selection(pop, new_pop);
% 更新温度
T = alpha * T;
% 计算代价函数值
for j = 1:pop_size
c = pop(j, :);
cost(j) = makespan(c);
end
% 绘制收敛图
plot(cost);
title('Convergence Plot');
xlabel('Generation');
ylabel('Cost');
drawnow;
% 终止条件
if T < Tf
break;
end
end
%% 输出甘特图
best_sol = pop(1, :);
best_cost = makespan(best_sol);
gantt_chart(best_sol);
%% 交叉操作函数
function [c1, c2] = crossover(p1, p2)
n = length(p1);
c1 = zeros(1, n);
c2 = zeros(1, n);
k = randi(n-1);
c1(1:k) = p1(1:k);
c2(1:k) = p2(1:k);
for i = k+1:n
if ~ismember(p2(i), c1)
c1(i) = p2(i);
end
if ~ismember(p1(i), c2)
c2(i) = p1(i);
end
end
end
%% 变异操作函数
function c = mutation(p)
n = length(p);
k = randi(n-1);
c = p;
tmp = c(k+1);
c(k+1) = c(k);
c(k) = tmp;
end
%% 选择操作函数
function new_pop = selection(pop, new_pop)
n = length(pop);
m = length(new_pop);
all_pop = [pop; new_pop];
[~, idx] = sort(makespan(all_pop));
new_pop = all_pop(idx(1:n), :);
end
%% 计算代价函数值
function c = makespan(sol)
n = length(sol);
m = 5;
t = zeros(m, n);
for i = 1:n
t(1, i) = t(1, i-1) + randi([1, 5]); % 第一台机器
end
for j = 2:m
for i = 1:n
t(j, i) = max(t(j-1, i), t(j, i-1)) + randi([1, 5]); % 其他机器
end
end
c = t(m, sol(n));
end
%% 输出甘特图函数
function gantt_chart(sol)
n = length(sol);
m = 5;
t = zeros(m, n);
for i = 1:n
t(1, i) = t(1, i-1) + randi([1, 5]); % 第一台机器
end
for j = 2:m
for i = 1:n
t(j, i) = max(t(j-1, i), t(j, i-1)) + randi([1, 5]); % 其他机器
end
end
colors = ['r', 'g', 'b', 'c', 'm'];
figure;
for i = 1:m
for j = 1:n
if sol(j) == i
rectangle('Position', [t(i, j), i-0.5, randi([1, 5]), 1], 'FaceColor', colors(i));
hold on;
end
end
end
ylim([0, m+0.5]);
xlim([0, max(max(t))+5]);
yticks(1:m);
yticklabels({'M1', 'M2', 'M3', 'M4', 'M5'});
xlabel('Time');
title('Gantt Chart');
end
```
该代码中,遗传模拟退火算法被用于优化流水车间调度问题,其中代价函数为 makespan 函数,该函数计算给定调度方案的最大完成时间。具体实现中,随机生成初始种群后,循环进行交叉和变异操作,并通过选择操作更新种群。同时,温度不断降低,直到达到终止温度为止。最终输出最优解的甘特图和收敛图。
阅读全文