使用python代码,用UCI公共测试数据库中澳大利亚信贷批准数据集实现线性逻辑回归和非线性随机森林构建模型,并运用合适的指标来评估实验结果
时间: 2024-03-07 21:49:08 浏览: 311
来自 UCI 和绘图决策区域的小麦种子的逻辑回归分类预测器
好的,针对您的问题,我可以给出以下代码实现线性逻辑回归和非线性随机森林构建模型,并使用合适的指标来评估实验结果:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
# 读取数据集
data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/credit-screening/crx.data', header=None)
# 数据预处理,将'?'替换为NaN,同时将缺失值所在行删除
data = data.replace('?', np.nan)
data = data.dropna()
data.reset_index(drop=True, inplace=True)
# 将分类变量转化为数值变量
data[0] = data[0].map({'a': 0, 'b': 1})
for i in range(1, 10):
data[i] = pd.Categorical(data[i]).codes
# 划分数据集
X = data.iloc[:, :-1]
y = data.iloc[:, -1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 线性逻辑回归模型
lr = LogisticRegression()
lr.fit(X_train, y_train)
lr_pred = lr.predict(X_test)
# 非线性随机森林模型
rf = RandomForestClassifier(n_estimators=200, max_depth=8, random_state=42)
rf.fit(X_train, y_train)
rf_pred = rf.predict(X_test)
# 模型评估
lr_acc = accuracy_score(y_test, lr_pred)
lr_pre = precision_score(y_test, lr_pred)
lr_rec = recall_score(y_test, lr_pred)
lr_f1 = f1_score(y_test, lr_pred)
rf_acc = accuracy_score(y_test, rf_pred)
rf_pre = precision_score(y_test, rf_pred)
rf_rec = recall_score(y_test, rf_pred)
rf_f1 = f1_score(y_test, rf_pred)
print("线性逻辑回归模型:")
print("Accuracy: {:.4f}".format(lr_acc))
print("Precision: {:.4f}".format(lr_pre))
print("Recall: {:.4f}".format(lr_rec))
print("F1 Score: {:.4f}".format(lr_f1))
print("非线性随机森林模型:")
print("Accuracy: {:.4f}".format(rf_acc))
print("Precision: {:.4f}".format(rf_pre))
print("Recall: {:.4f}".format(rf_rec))
print("F1 Score: {:.4f}".format(rf_f1))
```
上述代码使用UCI公共测试数据库中的澳大利亚信贷批准数据集,具体实现了线性逻辑回归和非线性随机森林模型的构建,并使用精度、精确度、召回率和F1分数等指标进行了评估。您可以根据需要自行修改代码中的参数,以获得更好的实验结果。
阅读全文