这段代码什么作用def get_tag(word): tag=[] if len(word)==1: tag = ['S'] elif len(word)==2: tag = ['B','E'] else: num = len(word)-2 tag.append('B') tag.extend(['M']*num) tag.append('E') return tag def compute(init_mat,trans_mat,emit_mat): init_sum = sum(init_mat.values()) for key,value in init_mat.items(): init_mat[key] = round(value/init_sum,3) for key,value in trans_mat.items(): cur_sum = sum(value.values()) if(cur_sum==0): continue for i,j in value.items(): trans_mat[key][i] = round(j/cur_sum,3) emit_list = emit_mat.values.tolist() for i in range(len(emit_list)): cur_sum = sum(emit_list[i]) if (cur_sum == 0): continue for j in range(len(emit_list[i])): emit_mat.iloc[i,j] = round(emit_list[i][j]/cur_sum,3) def markov(txt,init_mat,trans_mat,emit_mat):
时间: 2024-04-25 15:27:08 浏览: 123
基于python3生成标签云代码解析
这段代码定义了三个函数,分别是 `get_tag(word)`、`compute(init_mat,trans_mat,emit_mat)` 和 `markov(txt,init_mat,trans_mat,emit_mat)`。
`get_tag(word)` 函数的作用是根据输入的中文词汇 `word` 返回其对应的词性标记。如果词汇长度为 1,则其标记为 'S';如果长度为 2,则其标记为 'B' 和 'E';否则,其标记为 'B'、若干个 'M' 和 'E'。
`compute(init_mat,trans_mat,emit_mat)` 函数用于计算并更新初始概率矩阵 `init_mat`、转移概率矩阵 `trans_mat` 和发射概率矩阵 `emit_mat`,其中 `init_mat` 和 `trans_mat` 是字典类型,`emit_mat` 是 pandas 的 DataFrame 类型。
`markov(txt,init_mat,trans_mat,emit_mat)` 函数的作用是根据输入的中文文本 `txt` 和三个概率矩阵 `init_mat`、`trans_mat`、`emit_mat` 进行隐马尔可夫模型的分词,返回分好词的结果。
阅读全文