写pytorch构建的对抗神经网络代码
时间: 2023-07-22 19:03:07 浏览: 104
Pytorch-pytorch深度学习教程之生成对抗网络.zip
以下是一个简单的PyTorch实现的对抗生成网络(GAN)的代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
# 定义生成器网络
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.fc1 = nn.Linear(100, 256)
self.fc2 = nn.Linear(256, 512)
self.fc3 = nn.Linear(512, 784)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.sigmoid(self.fc3(x))
return x
# 定义判别器网络
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.fc1 = nn.Linear(784, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 1)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.sigmoid(self.fc3(x))
return x
# 定义训练函数
def train(generator, discriminator, train_loader, num_epochs):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
generator = generator.to(device)
discriminator = discriminator.to(device)
criterion = nn.BCELoss()
g_optimizer = optim.Adam(generator.parameters(), lr=0.0002)
d_optimizer = optim.Adam(discriminator.parameters(), lr=0.0002)
for epoch in range(num_epochs):
for i, (real_images, _) in enumerate(train_loader):
real_images = real_images.view(-1, 784).to(device)
real_labels = torch.ones(real_images.size(0), 1).to(device)
fake_labels = torch.zeros(real_images.size(0), 1).to(device)
# 训练判别器
d_optimizer.zero_grad()
outputs = discriminator(real_images)
d_loss_real = criterion(outputs, real_labels)
z = torch.randn(real_images.size(0), 100).to(device)
fake_images = generator(z)
outputs = discriminator(fake_images.detach())
d_loss_fake = criterion(outputs, fake_labels)
d_loss = d_loss_real + d_loss_fake
d_loss.backward()
d_optimizer.step()
# 训练生成器
g_optimizer.zero_grad()
z = torch.randn(real_images.size(0), 100).to(device)
fake_images = generator(z)
outputs = discriminator(fake_images)
g_loss = criterion(outputs, real_labels)
g_loss.backward()
g_optimizer.step()
if (i+1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], d_loss: {:.4f}, g_loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, len(train_loader), d_loss.item(), g_loss.item()))
# 加载MNIST数据集
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(mean=(0.5,), std=(0.5,))])
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True)
# 初始化生成器和判别器
generator = Generator()
discriminator = Discriminator()
# 训练GAN
train(generator, discriminator, train_loader, num_epochs=200)
```
在这个代码中,我们定义了一个简单的生成器和判别器网络,并使用MNIST数据集训练了一个简单的GAN模型。训练过程中,我们使用Adam优化器和二元交叉熵损失函数。注意,在训练生成器时,我们将生成器的输出与判别器的真实标签进行比较,这是GAN的关键之一。
阅读全文