AttributeError: 'UNet3Plus' object has no attribute 'Cat'
时间: 2023-06-22 07:18:01 浏览: 217
这个错误通常是因为你尝试使用了一个不存在的函数或属性。在这种情况下,你尝试使用 `Cat` 属性,但是 `UNet3Plus` 对象中没有这个属性。
可能是你想使用 `torch.cat()` 函数来将张量拼接在一起,而不是使用 `Cat` 属性。请注意大小写,正确的函数名是 `torch.cat()`,而不是 `Cat`。
例如,如果你的代码是这样的:
```
import torch.nn as nn
class UNet3Plus(nn.Module):
def __init__(self, in_channels, out_channels):
super(UNet3Plus, self).__init__()
self.conv1 = nn.Conv2d(in_channels, 64, 3, padding=1)
self.conv2 = nn.Conv2d(64, 128, 3, padding=1)
self.conv3 = nn.Conv2d(128, 256, 3, padding=1)
self.conv4 = nn.Conv2d(256, 512, 3, padding=1)
self.conv5 = nn.Conv2d(512, 1024, 3, padding=1)
self.upconv1 = nn.ConvTranspose2d(1024, 512, 2, stride=2)
self.upconv2 = nn.ConvTranspose2d(512, 256, 2, stride=2)
self.upconv3 = nn.ConvTranspose2d(256, 128, 2, stride=2)
self.upconv4 = nn.ConvTranspose2d(128, 64, 2, stride=2)
self.final_conv = nn.Conv2d(64, out_channels, 1)
def forward(self, x):
c1 = nn.functional.relu(self.conv1(x))
c2 = nn.functional.relu(self.conv2(nn.functional.max_pool2d(c1, 2)))
c3 = nn.functional.relu(self.conv3(nn.functional.max_pool2d(c2, 2)))
c4 = nn.functional.relu(self.conv4(nn.functional.max_pool2d(c3, 2)))
c5 = nn.functional.relu(self.conv5(nn.functional.max_pool2d(c4, 2)))
u1 = self.upconv1(c5)
u2 = self.upconv2(nn.functional.relu(torch.Cat([u1, c4], 1)))
u3 = self.upconv3(nn.functional.relu(torch.Cat([u2, c3], 1)))
u4 = self.upconv4(nn.functional.relu(torch.Cat([u3, c2], 1)))
out = self.final_conv(nn.functional.relu(torch.Cat([u4, c1], 1)))
return out
```
你需要将 `torch.Cat()` 改为 `torch.cat()`,例如:
```
import torch.nn as nn
class UNet3Plus(nn.Module):
def __init__(self, in_channels, out_channels):
super(UNet3Plus, self).__init__()
self.conv1 = nn.Conv2d(in_channels, 64, 3, padding=1)
self.conv2 = nn.Conv2d(64, 128, 3, padding=1)
self.conv3 = nn.Conv2d(128, 256, 3, padding=1)
self.conv4 = nn.Conv2d(256, 512, 3, padding=1)
self.conv5 = nn.Conv2d(512, 1024, 3, padding=1)
self.upconv1 = nn.ConvTranspose2d(1024, 512, 2, stride=2)
self.upconv2 = nn.ConvTranspose2d(512, 256, 2, stride=2)
self.upconv3 = nn.ConvTranspose2d(256, 128, 2, stride=2)
self.upconv4 = nn.ConvTranspose2d(128, 64, 2, stride=2)
self.final_conv = nn.Conv2d(64, out_channels, 1)
def forward(self, x):
c1 = nn.functional.relu(self.conv1(x))
c2 = nn.functional.relu(self.conv2(nn.functional.max_pool2d(c1, 2)))
c3 = nn.functional.relu(self.conv3(nn.functional.max_pool2d(c2, 2)))
c4 = nn.functional.relu(self.conv4(nn.functional.max_pool2d(c3, 2)))
c5 = nn.functional.relu(self.conv5(nn.functional.max_pool2d(c4, 2)))
u1 = self.upconv1(c5)
u2 = self.upconv2(nn.functional.relu(torch.cat([u1, c4], 1)))
u3 = self.upconv3(nn.functional.relu(torch.cat([u2, c3], 1)))
u4 = self.upconv4(nn.functional.relu(torch.cat([u3, c2], 1)))
out = self.final_conv(nn.functional.relu(torch.cat([u4, c1], 1)))
return out
```
这样就能够解决这个错误了。
阅读全文