OpenCV中的哪些特征提取方法你熟悉?这些方法有什么优缺点?列出10条
时间: 2023-05-31 17:06:44 浏览: 114
1. SIFT (Scale-Invariant Feature Transform): SIFT是一种基于尺度空间的特征提取方法,能够提取出图像中的关键点和特征描述子。优点是对旋转、缩放和亮度变化具有不变性,缺点是计算量大,速度较慢。
2. SURF (Speeded-Up Robust Features): SURF是一种基于Hessian矩阵的特征提取方法,能够快速提取出图像中的关键点和特征描述子。优点是速度快,对旋转、缩放和亮度变化具有不变性,缺点是对噪声和遮挡比较敏感。
3. ORB (Oriented FAST and Rotated BRIEF): ORB是一种基于FAST角点检测和BRIEF描述子的特征提取方法,能够快速提取出图像中的关键点和特征描述子。优点是速度快,对旋转、缩放和亮度变化具有不变性,缺点是对噪声和遮挡比较敏感。
4. AKAZE (Accelerated-KAZE): AKAZE是一种基于KAZE算法的加速版,能够快速提取出图像中的关键点和特征描述子。优点是速度快,对旋转、缩放和亮度变化具有不变性,缺点是对噪声和遮挡比较敏感。
5. BRISK (Binary Robust Invariant Scalable Keypoints): BRISK是一种二进制描述子的特征提取方法,能够快速提取出图像中的关键点和特征描述子。优点是速度快,对旋转、缩放和亮度变化具有不变性,缺点是对噪声和遮挡比较敏感。
6. FREAK (Fast Retina Keypoint): FREAK是一种基于图像的灰度值分布的特征提取方法,能够快速提取出图像中的关键点和特征描述子。优点是速度快,对旋转、缩放和亮度变化具有不变性,缺点是对噪声和遮挡比较敏感。
7. KAZE (Accelerated-Kernelized-Analysis-Zone-Extractor): KAZE是一种基于非线性尺度空间的特征提取方法,能够提取出图像中的关键点和特征描述子。优点是对旋转、缩放和亮度变化具有不变性,缺点是计算量大,速度较慢。
8. LATCH (Learned Arrangements of Three Patch Codes): LATCH是一种基于三个相邻的图像块的特征提取方法,能够快速提取出图像中的关键点和特征描述子。优点是速度快,对旋转、缩放和亮度变化具有不变性,缺点是对噪声和遮挡比较敏感。
9. DAISY (DAISY: A Fast Local Descriptor for Dense Wide-Baseline Stereo): DAISY是一种基于梯度直方图的局部特征提取方法,能够提取出图像中的关键点和特征描述子。优点是对旋转、缩放和亮度变化具有不变性,缺点是对噪声和遮挡比较敏感。
10. BRIEF (Binary Robust Independent Elementary Features): BRIEF是一种二进制描述子的特征提取方法,能够快速提取出图像中的关键点和特征描述子。优点是速度快,缺点是对旋转、缩放和亮度变化不具有不变性。
阅读全文