yolov1代码
时间: 2023-07-02 21:06:52 浏览: 96
以下是 YOLOv1 的 Python 代码实现,仅供参考:
```python
import numpy as np
import tensorflow as tf
class YOLOv1:
def __init__(self, num_classes, S=7, B=2, lambda_coord=5, lambda_noobj=0.5):
self.num_classes = num_classes
self.S = S
self.B = B
self.lambda_coord = lambda_coord
self.lambda_noobj = lambda_noobj
self.cell_size = 1.0 / S
self.images = tf.placeholder(tf.float32, shape=[None, 448, 448, 3])
self.labels = tf.placeholder(tf.float32, shape=[None, S, S, 5 * B + num_classes])
conv1 = self.conv_layer(self.images, [7, 7, 3, 64], [64])
pool1 = self.max_pool(conv1, [2, 2])
conv2 = self.conv_layer(pool1, [3, 3, 64, 192], [192])
pool2 = self.max_pool(conv2, [2, 2])
conv3 = self.conv_layer(pool2, [1, 1, 192, 128], [128])
conv4 = self.conv_layer(conv3, [3, 3, 128, 256], [256])
conv5 = self.conv_layer(conv4, [1, 1, 256, 256], [256])
conv6 = self.conv_layer(conv5, [3, 3, 256, 512], [512])
pool6 = self.max_pool(conv6, [2, 2])
conv7 = self.conv_layer(pool6, [1, 1, 512, 256], [256])
conv8 = self.conv_layer(conv7, [3, 3, 256, 512], [512])
conv9 = self.conv_layer(conv8, [1, 1, 512, 256], [256])
conv10 = self.conv_layer(conv9, [3, 3, 256, 512], [512])
conv11 = self.conv_layer(conv10, [1, 1, 512, 256], [256])
conv12 = self.conv_layer(conv11, [3, 3, 256, 512], [512])
conv13 = self.conv_layer(conv12, [1, 1, 512, 256], [256])
conv14 = self.conv_layer(conv13, [3, 3, 256, 512], [512])
conv15 = self.conv_layer(conv14, [1, 1, 512, 512], [512])
conv16 = self.conv_layer(conv15, [3, 3, 512, 1024], [1024])
pool16 = self.max_pool(conv16, [2, 2])
conv17 = self.conv_layer(pool16, [1, 1, 1024, 512], [512])
conv18 = self.conv_layer(conv17, [3, 3, 512, 1024], [1024])
conv19 = self.conv_layer(conv18, [1, 1, 1024, 512], [512])
conv20 = self.conv_layer(conv19, [3, 3, 512, 1024], [1024])
conv21 = self.conv_layer(conv20, [3, 3, 1024, 1024], [1024])
conv22 = self.conv_layer(conv21, [3, 3, 1024, 1024], [1024])
flattened = tf.concat([tf.reshape(conv22, [-1, 7 * 7 * 1024]), tf.reshape(self.labels, [-1, 7 * 7 * 30])], axis=1)
fc1 = self.fc_layer(flattened, 7 * 7 * 1024 + 7 * 7 * 30, 4096)
fc2 = self.fc_layer(fc1, 4096, S * S * (5 * B + num_classes), relu=False)
self.logits = tf.reshape(fc2, [-1, S, S, 5 * B + num_classes])
self.loss = self.compute_loss()
self.optimizer = tf.train.AdamOptimizer().minimize(self.loss)
def conv_layer(self, inputs, shape, biases):
weights = tf.Variable(tf.truncated_normal(shape, stddev=0.1))
conv = tf.nn.conv2d(inputs, weights, strides=[1, 1, 1, 1], padding='SAME')
return tf.nn.relu(tf.nn.bias_add(conv, biases))
def max_pool(self, inputs, ksize):
return tf.nn.max_pool(inputs, ksize=[1, ksize[0], ksize[1], 1], strides=[1, 2, 2, 1], padding='SAME')
def fc_layer(self, inputs, in_size, out_size, relu=True):
weights = tf.Variable(tf.truncated_normal([in_size, out_size], stddev=0.1))
biases = tf.Variable(tf.constant(0.1, shape=[out_size]))
fc = tf.nn.bias_add(tf.matmul(inputs, weights), biases)
if relu:
return tf.nn.relu(fc)
else:
return fc
def compute_loss(self):
mask_obj = tf.tile(tf.expand_dims(tf.cast(self.labels[:, :, :, 4] > 0, dtype=tf.float32), axis=-1), [1, 1, 1, self.B])
mask_noobj = tf.tile(tf.expand_dims(tf.cast(self.labels[:, :, :, 4] == 0, dtype=tf.float32), axis=-1), [1, 1, 1, self.B])
preds_xy = tf.sigmoid(self.logits[:, :, :, :2])
preds_wh = tf.exp(self.logits[:, :, :, 2:4])
preds_conf = tf.sigmoid(self.logits[:, :, :, 4:5])
preds_class = tf.nn.softmax(self.logits[:, :, :, 5:])
targets_xy = self.labels[:, :, :, :2]
targets_wh = tf.sqrt(self.labels[:, :, :, 2:4])
targets_conf = self.labels[:, :, :, 4:5]
targets_class = self.labels[:, :, :, 5:]
loss_xy = tf.reduce_sum(tf.square(mask_obj * (preds_xy - targets_xy)) * self.lambda_coord)
loss_wh = tf.reduce_sum(tf.square(mask_obj * (preds_wh - targets_wh)) * self.lambda_coord)
loss_conf_obj = tf.reduce_sum(tf.square(mask_obj * (preds_conf - targets_conf)))
loss_conf_noobj = tf.reduce_sum(tf.square(mask_noobj * (preds_conf - targets_conf))) * self.lambda_noobj
loss_class = tf.reduce_sum(tf.square(targets_class - preds_class))
total_loss = loss_xy + loss_wh + loss_conf_obj + loss_conf_noobj + loss_class
return total_loss
```
注意,这只是一个简单的实现,可能与原论文中的实现略有不同。另外,此代码未包含数据预处理和训练过程,仅提供模型结构和损失函数的实现。
阅读全文