请告诉我这段代码的意思 class RNN(paddle.nn.Layer): def __init__(self): super(RNN, self).__init__() self.dict_dim = vocab["<pad>"] self.emb_dim = 128 self.hid_dim = 128 self.class_dim = 2 self.embedding = Embedding( self.dict_dim + 1, self.emb_dim, sparse=False) self._fc1 = Linear(self.emb_dim, self.hid_dim) self.lstm = paddle.nn.LSTM(self.hid_dim, self.hid_dim) self.fc2 = Linear(19200, self.class_dim)
时间: 2023-05-30 14:01:14 浏览: 172
RNN.ipynb.zip_.ipynb_TensorFlow rnn_人工智能_人工智能 代码_智能
这段代码定义了一个继承自paddle.nn.Layer的RNN类,用于实现一个循环神经网络模型。在初始化方法中,定义了以下属性:
- dict_dim:词典大小,即词汇表中单词的数量;
- emb_dim:词向量维度,即每个单词的向量表示的维度;
- hid_dim:隐层状态向量维度,即每个时间步的隐层状态向量的维度;
- class_dim:输出类别数,即模型最终需要分类的类别数。
然后,通过Embedding层将输入的词汇表中的单词转换为向量表示,利用Linear层进行线性变换,进一步提取特征,接着使用LSTM层实现循环神经网络,并最终使用Linear层将LSTM输出的隐层状态向量转换为最终的分类结果。
阅读全文