transformer实现语音识别代码
时间: 2023-09-03 10:15:50 浏览: 153
Transformer模型在语音识别中的应用主要是通过将语音信号转换成语音特征,再将语音特征输入Transformer模型进行文本转换。以下是一个简单的基于PyTorch的Transformer语音识别代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class TransformerASR(nn.Module):
def __init__(self, input_size, hidden_size, output_size, num_layers):
super(TransformerASR, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.num_layers = num_layers
self.encoder_layer = nn.TransformerEncoderLayer(d_model=input_size, nhead=8, dim_feedforward=2048)
self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers)
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = x.permute(1, 0, 2)
x = self.fc1(x)
x = F.relu(x)
x = self.transformer_encoder(x)
x = self.fc2(x)
x = x.permute(1, 0, 2)
return x
```
在这个示例中,使用了PyTorch自带的TransformerEncoder和TransformerEncoderLayer模块,其中d_model参数指定了输入特征的维度,nhead参数指定了Transformer中多头注意力机制的头数,dim_feedforward参数指定了Transformer中全连接层的神经元数量。输入的语音特征首先通过一个全连接层进行降维,再输入到TransformerEncoder中进行编码。最后通过一个全连接层将编码结果映射到输出类别的数量。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044833.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![](https://img-home.csdnimg.cn/images/20250102104920.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)