transformer语音识别代码
时间: 2023-09-03 14:10:38 浏览: 102
以下是一个使用Transformer进行语音识别的Python代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchaudio
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
# Define the dataset for loading the audio data
class AudioDataset(Dataset):
def __init__(self, file_paths):
self.file_paths = file_paths
def __len__(self):
return len(self.file_paths)
def __getitem__(self, idx):
waveform, sample_rate = torchaudio.load(self.file_paths[idx])
return waveform, sample_rate
# Define the Transformer model
class TransformerModel(nn.Module):
def __init__(self, input_dim, output_dim, d_model, nhead, num_layers, dim_feedforward, dropout):
super(TransformerModel, self).__init__()
self.input_proj = nn.Linear(input_dim, d_model)
encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
self.output_proj = nn.Linear(d_model, output_dim)
def forward(self, src):
src = self.input_proj(src)
src = src.permute(1, 0, 2)
output = self.transformer_encoder(src)
output = output.permute(1, 0, 2)
output = self.output_proj(output)
return output
# Set the hyperparameters
input_dim = 1
output_dim = 29 # Number of phonemes in English language
d_model = 512
nhead = 8
num_layers = 6
dim_feedforward = 2048
dropout = 0.1
lr = 0.0001
batch_size = 32
epochs = 10
# Load the audio dataset and create the dataloader
file_paths = ["audio1.wav", "audio2.wav", ...]
audio_dataset = AudioDataset(file_paths)
audio_dataloader = DataLoader(audio_dataset, batch_size=batch_size, shuffle=True)
# Initialize the Transformer model and the optimizer
model = TransformerModel(input_dim, output_dim, d_model, nhead, num_layers, dim_feedforward, dropout)
optimizer = optim.Adam(model.parameters(), lr=lr)
# Define the loss function
criterion = nn.CrossEntropyLoss()
# Train the Transformer model
for epoch in range(epochs):
running_loss = 0.0
for i, data in enumerate(audio_dataloader, 0):
inputs, labels = data
inputs = inputs.squeeze().transpose(0, 1) # Shape: (seq_len, batch_size, input_dim)
labels = labels.squeeze() - 1 # Subtract 1 to convert phoneme index from 1-based to 0-based
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs.view(-1, output_dim), labels.view(-1))
loss.backward()
optimizer.step()
running_loss += loss.item()
print("Epoch %d loss: %.3f" % (epoch+1, running_loss / len(audio_dataloader)))
```
请注意,此示例是基于一个简单的英语语音识别任务,使用TIMIT数据集。在实际使用时,你需要根据你的数据集和任务进行适当的修改。
阅读全文