蛇优化算法python代码
时间: 2023-07-05 19:07:07 浏览: 95
以下是蛇优化算法的 Python 实现:
```python
import random
import numpy as np
# 蛇优化算法
def snake_algorithm(objective_function, lb, ub, dimension, iterations, population_size, c1=1, c2=1, c3=1):
# 初始化种群
population = np.zeros((population_size, dimension))
for i in range(population_size):
population[i, :] = np.array([random.uniform(lb, ub) for j in range(dimension)])
# 初始化个体最优位置
pbest = np.copy(population)
# 初始化个体最优适应度值
pbest_fitness = np.array([float("inf") for i in range(population_size)])
# 寻找全局最优位置和适应度值
gbest_fitness = float("inf")
gbest = np.zeros(dimension)
for i in range(iterations):
for j in range(population_size):
# 计算当前个体适应度值
fitness = objective_function(population[j, :])
# 更新个体最优位置和适应度值
if fitness < pbest_fitness[j]:
pbest[j, :] = np.copy(population[j, :])
pbest_fitness[j] = fitness
# 更新全局最优位置和适应度值
if fitness < gbest_fitness:
gbest = np.copy(population[j, :])
gbest_fitness = fitness
# 更新种群位置
for j in range(population_size):
r1 = random.random()
r2 = random.random()
r3 = random.random()
population[j, :] = population[j, :] + c1 * r1 * (pbest[j, :] - population[j, :]) + c2 * r2 * (gbest - population[j, :]) + c3 * r3 * (np.mean(population, axis=0) - population[j, :])
# 确保位置在搜索空间内
population[j, :] = np.maximum(population[j, :], lb)
population[j, :] = np.minimum(population[j, :], ub)
return gbest, gbest_fitness
```
其中,`objective_function` 是目标函数,`lb` 和 `ub` 是搜索空间的下界和上界,`dimension` 是搜索空间的维度,`iterations` 是迭代次数,`population_size` 是种群大小,`c1`、`c2` 和 `c3` 是三个常数。算法返回全局最优位置和适应度值。
阅读全文