这段代码有什么作用,random.seed(123) down_neg = feature_data[feature_data['failure_tag'] == 0].sample(frac=0.1)
时间: 2024-03-10 07:45:44 浏览: 60
这段代码的作用如下:
```python
random.seed(123) # 随机数生成器种子,保证随机结果可重复
down_neg = feature_data[feature_data['failure_tag'] == 0].sample(frac=0.1)
```
首先,`random.seed(123)`是为了设定一个随机数种子,保证每次运行代码时,随机结果都是一致的。这在调试和复现实验结果时非常有用。
接下来,`feature_data`是一个数据框,`feature_data['failure_tag'] == 0`是一个布尔向量,表示`failure_tag`列中等于0的行。`.sample(frac=0.1)`是对这些行进行随机采样,采样比例为0.1,也就是采样10%的行。
因此,这段代码的作用是从`feature_data`数据框中,随机选择10%的`failure_tag`等于0的行,存储到`down_neg`变量中。这通常用于不均衡数据集的处理,针对较少的类别进行下采样,以平衡数据集的比例。
相关问题
if __name__ == "__main__": args = parse_args() print("A list all args: \n======================") pprint(vars(args)) print() #设置 CPU 生成随机数的种子 ,方便下次复现实验结果。 torch.manual_seed(args.seed) np.random.seed(args.seed) #路径拼接文件路径,可以传入多个路径 PATH = os.path.join("resources", args.data) EMBEDDING_PATH = "resources/" static_feat = ["sex", "age", "pur_power"] dynamic_feat = ["category", "shop", "brand"] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n_epochs = args.n_epochs batch_size = args.batch_size lr = args.lr item_embed_size = args.embed_size feat_embed_size = args.embed_size hidden_size = (256, 128) #CosineEmbeddingLoss余弦相似度损失函数,用于判断输入的两个向量是否相似 #BCEWithLogitsLoss就是把Sigmoid-BCELoss合成一步,计算交叉损失熵 criterion = ( nn.CosineEmbeddingLoss() if args.loss == "cosine" else nn.BCEWithLogitsLoss() ) #lower将字符串中的所有大写字母转换为小写字母 criterion_type = ( "cosine" if "cosine" in criterion.__class__.__name__.lower() else "bce" ) neg_label = -1. if criterion_type == "cosine" else 0. neg_item = args.neg_item columns = ["user", "item", "label", "time", "sex", "age", "pur_power", "category", "shop", "brand"] ( n_users, n_items, train_user_consumed, eval_user_consumed, train_data, eval_data, user_map, item_map, feat_map#feature是特征比如数据集里 age, brand 之类的 ) = process_feat_data( PATH, columns, test_size=0.2, time_col="time", static_feat=static_feat, dynamic_feat=dynamic_feat ) print(f"n_users: {n_users}, n_items: {n_items}, " f"train_shape: {train_data.shape}, eval_shape: {eval_data.shape}") train_user, train_item, train_label = sample_items_random( train_data, n_items, train_user_consumed, neg_label, neg_item ) eval_user, eval_item, eval_label = sample_items_random( eval_d
这个代码段的作用是:
1. 检查当前运行的代码是否为主程序,而不是被其他程序导入后调用的子程序;
2. 如果是主程序,则调用 parse_args() 函数解析命令行参数,并将结果保存在 args 变量中;
3. 打印所有解析后的参数列表,并用 pprint() 函数以易于阅读的格式输出。
def generate_cf_batch(self, user_dict, batch_size): # 1024 exist_users = user_dict.keys() # 字典里所有用户 if batch_size <= len(exist_users): # batch_user = random.sample(exist_users, batch_size) else: batch_user = [random.choice(exist_users) for _ in range(batch_size)] batch_pos_item, batch_neg_item = [], [] for u in batch_user: batch_pos_item += self.sample_pos_items_for_u(user_dict, u, 1) batch_neg_item += self.sample_neg_items_for_u(user_dict, u, 1) batch_user = torch.LongTensor(batch_user) batch_pos_item = torch.LongTensor(batch_pos_item) batch_neg_item = torch.LongTensor(batch_neg_item) return batch_user, batch_pos_item, batch_neg_item
这是一个函数,它的作用是生成一个三元组(batch_user, batch_pos_item, batch_neg_item),其中batch_user是一个长度为batch_size的整数序列,表示从用户字典(user_dict)中随机选择的batch_size个用户;batch_pos_item是一个长度为(batch_size * 1)的整数序列,表示对于每个用户,随机选择一个该用户喜欢的物品;batch_neg_item是一个长度为(batch_size * 1)的整数序列,表示对于每个用户,随机选择一个该用户不喜欢的物品。其中sample_pos_items_for_u和sample_neg_items_for_u是两个函数,用于从用户字典(user_dict)中为指定用户(u)随机选择一个喜欢的物品和一个不喜欢的物品。
阅读全文