centrality = nx.degree_centrality(graph) nx.set_node_attributes(graph, centrality, 'centrality') degrees = sorted(centrality.items(), key=itemgetter(1), reverse=True) for item in degrees[0:10]: print (item)
时间: 2024-02-29 20:52:57 浏览: 134
中心度算法演示
这段代码使用了 NetworkX 库中的 `degree_centrality` 函数计算了图中每个节点的度中心性(degree centrality),然后将该结果作为节点属性添加到图中:
```python
centrality = nx.degree_centrality(graph) # 计算度中心性
nx.set_node_attributes(graph, centrality, 'centrality') # 将结果添加到节点属性中
```
接着,代码对节点进行排序并输出前10个节点的度中心性,以便观察最重要的节点:
```python
degrees = sorted(centrality.items(), key=itemgetter(1), reverse=True) # 对节点按度中心性进行排序
for item in degrees[0:10]: # 输出前10个节点
print(item)
```
其中,`sorted` 函数对字典进行排序,`itemgetter` 函数指定以字典的第二个值(即度中心性)进行排序,`reverse=True` 表示按从大到小的顺序排列。最后,代码输出前10个节点的度中心性。
阅读全文