可以调用任意框架,完成对tiny-imagenet的训练过程和分类预测python
时间: 2024-05-16 12:13:36 浏览: 115
好的,下面是一个使用PyTorch框架完成对tiny-imagenet的训练过程和分类预测的示例代码:
首先,需要下载并解压缩tiny-imagenet数据集,并按照以下目录结构组织数据:
```
tiny-imagenet/
├── test/
│ └── images/
├── train/
│ ├── n01443537/
│ │ ├── images/
│ │ └── ...
│ ├── n01629819/
│ │ ├── images/
│ │ └── ...
│ ├── ...
│ └── n99999999/
│ ├── images/
│ └── ...
└── val/
├── images/
└── val_annotations.txt
```
其中,train文件夹包含用于训练的图像,val文件夹包含用于验证的图像,test文件夹包含要进行分类预测的图像。
然后,使用以下代码进行模型训练和分类预测:
```python
import torch
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
# 定义数据预处理操作
transform_train = transforms.Compose([
transforms.RandomCrop(64, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 加载数据集
train_set = ImageFolder('tiny-imagenet/train', transform=transform_train)
train_loader = DataLoader(train_set, batch_size=128, shuffle=True, num_workers=2)
val_set = ImageFolder('tiny-imagenet/val', transform=transform_test)
val_loader = DataLoader(val_set, batch_size=128, shuffle=False, num_workers=2)
test_set = ImageFolder('tiny-imagenet/test', transform=transform_test)
test_loader = DataLoader(test_set, batch_size=128, shuffle=False, num_workers=2)
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
self.conv2 = nn.Conv2d(64, 128, 3, padding=1)
self.conv3 = nn.Conv2d(128, 256, 3, padding=1)
self.fc1 = nn.Linear(256 * 8 * 8, 1024)
self.fc2 = nn.Linear(1024, 200)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2)
x = F.relu(self.conv3(x))
x = F.max_pool2d(x, 2)
x = x.view(-1, 256 * 8 * 8)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
net = Net()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
# 训练模型
for epoch in range(100):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
# 在验证集上测试模型
correct = 0
total = 0
with torch.no_grad():
for data in val_loader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy on validation set: %d %%' % (100 * correct / total))
# 在测试集上进行分类预测
net.eval()
with torch.no_grad():
for data in test_loader:
images, _ = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
print(predicted)
```
注意,这段代码中的模型仅作为示例,并不一定是最优的模型。您可以根据自己的需求和数据集特点来选择合适的模型。同时,在训练过程中可能需要调整超参数,例如学习率、动量等,以获得更好的效果。
阅读全文