调用任意框架,完成对tiny-imagenet的训练过程和分类预测用jupyter notebook实现

时间: 2024-02-19 15:02:19 浏览: 25
好的,我可以为您提供基于 PyTorch 的代码实现,您可以在 Jupyter Notebook 中直接运行。请确保您已经安装了 PyTorch 和 torchvision 库。 ### 从头开始训练模型 #### 数据集准备 首先,我们需要下载 tiny-imagenet 数据集。可以从 [官方网站](https://tiny-imagenet.herokuapp.com/) 下载,也可以使用 Kaggle 上的 [数据集](https://www.kaggle.com/c/tiny-imagenet/data)。 然后,将下载好的数据集解压到指定的目录下,如下所示: ```python !unzip -q "tiny-imagenet-200.zip" -d "./data" ``` 接下来,我们需要对数据进行预处理,将图片 resize 到固定的大小(如 224x224),并将像素值归一化到 [0, 1] 的范围内。可以使用 torchvision 库中的 `transforms` 模块来进行图片的读取和处理。 ```python import os from torchvision import datasets, transforms data_dir = './data/tiny-imagenet-200' train_dir = os.path.join(data_dir, 'train') val_dir = os.path.join(data_dir, 'val') test_dir = os.path.join(data_dir, 'test') # 定义图像预处理的操作 train_transform = transforms.Compose([ transforms.Resize(256), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) val_transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # 加载数据集 train_dataset = datasets.ImageFolder(train_dir, transform=train_transform) val_dataset = datasets.ImageFolder(val_dir, transform=val_transform) test_dataset = datasets.ImageFolder(test_dir, transform=val_transform) # 创建 DataLoader,用于加载数据 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=32, shuffle=False) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=False) ``` #### 模型构建与训练 我们使用 PyTorch 自带的 ResNet18 模型进行训练。在训练之前,需要将数据集分为训练集、验证集和测试集。可以使用 PyTorch 中的 `DataLoader` 类来进行数据的划分和加载。 ```python import torch import torch.nn as nn import torch.optim as optim # 加载预训练模型 model = torch.hub.load('pytorch/vision:v0.9.0', 'resnet18', pretrained=True) # 替换模型最后一层的输出,使其与数据集分类数相同 num_classes = len(train_dataset.classes) model.fc = nn.Linear(model.fc.in_features, num_classes) # 将模型移动到 GPU 上 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=1e-4) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): # 训练模型 model.train() train_loss = 0.0 train_acc = 0.0 for i, (inputs, labels) in enumerate(train_loader): inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) train_acc += torch.sum(preds == labels.data) train_loss = train_loss / len(train_loader.dataset) train_acc = train_acc.double() / len(train_loader.dataset) # 在验证集上测试模型 model.eval() val_loss = 0.0 val_acc = 0.0 with torch.no_grad(): for inputs, labels in val_loader: inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) loss = criterion(outputs, labels) val_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) val_acc += torch.sum(preds == labels.data) val_loss = val_loss / len(val_loader.dataset) val_acc = val_acc.double() / len(val_loader.dataset) print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}, Val Loss: {:.4f}, Val Acc: {:.4f}' .format(epoch+1, num_epochs, train_loss, train_acc, val_loss, val_acc)) ``` #### 分类预测 训练完成后,可以使用测试集对模型进行测试,并计算模型在测试集上的准确率。 ```python # 在测试集上测试模型 model.eval() test_acc = 0.0 with torch.no_grad(): for inputs, labels in test_loader: inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) _, preds = torch.max(outputs, 1) test_acc += torch.sum(preds == labels.data) test_acc = test_acc.double() / len(test_loader.dataset) print('Test Acc: {:.4f}'.format(test_acc)) ``` ### 使用预训练模型进行 fine-tune #### 数据集准备 与从头开始训练模型的步骤相同。 #### 模型构建与训练 我们可以使用 PyTorch 自带的 ResNet18 模型进行 fine-tune。大部分预训练模型的前面几层都是固定的,可以将这些层的参数冻结,只训练后面几层的参数。这可以提高模型的训练速度和准确率。 ```python import torch import torch.nn as nn import torch.optim as optim from torchvision import models # 加载预训练模型 model = models.resnet18(pretrained=True) # 替换模型最后一层的输出,使其与数据集分类数相同 num_classes = len(train_dataset.classes) model.fc = nn.Linear(model.fc.in_features, num_classes) # 将前面几层的参数冻结 for param in model.parameters(): param.requires_grad = False for param in model.fc.parameters(): param.requires_grad = True # 将模型移动到 GPU 上 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.fc.parameters(), lr=0.01, momentum=0.9, weight_decay=1e-4) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): # 训练模型 model.train() train_loss = 0.0 train_acc = 0.0 for i, (inputs, labels) in enumerate(train_loader): inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) train_acc += torch.sum(preds == labels.data) train_loss = train_loss / len(train_loader.dataset) train_acc = train_acc.double() / len(train_loader.dataset) # 在验证集上测试模型 model.eval() val_loss = 0.0 val_acc = 0.0 with torch.no_grad(): for inputs, labels in val_loader: inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) loss = criterion(outputs, labels) val_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) val_acc += torch.sum(preds == labels.data) val_loss = val_loss / len(val_loader.dataset) val_acc = val_acc.double() / len(val_loader.dataset) print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}, Val Loss: {:.4f}, Val Acc: {:.4f}' .format(epoch+1, num_epochs, train_loss, train_acc, val_loss, val_acc)) ``` #### 分类预测 训练完成后,可以使用测试集对模型进行测试,并计算模型在测试集上的准确率。 ```python # 在测试集上测试模型 model.eval() test_acc = 0.0 with torch.no_grad(): for inputs, labels in test_loader: inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) _, preds = torch.max(outputs, 1) test_acc += torch.sum(preds == labels.data) test_acc = test_acc.double() / len(test_loader.dataset) print('Test Acc: {:.4f}'.format(test_acc)) ``` 希望这些代码能够对您有所帮助!

相关推荐

最新推荐

recommend-type

pycharm下python使用yolov3/yolov3-tiny训练好的权重文件.weights进行行人检测,批量测试自定义文件夹下的图片并输出至指定文件夹

python使用yolov3/yolov3-tiny训练好的权重文件.weights进行行人检测,批量测试自定义文件夹下的图片并输出至指定文件夹 目录 python使用yolov3/yolov3-tiny训练好的权重文件.weights进行行人检测,批量测试自定义...
recommend-type

setuptools-33.1.1-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

帮我实现在Androidstudio调用chapgpt并提供源码

首先,你需要运行一个ChitGPT的服务器,然后通过Android应用程序与该服务器进行通信。以下是一个简单的Android应用程序示例,可以与ChitGPT进行通信: 1. 首先,在Android Studio中创建一个新的项目,并添加以下依赖项: ``` implementation 'com.squareup.okhttp3:okhttp:4.9.0' implementation 'com.google.code.gson:gson:2.8.6' ``` 2. 创建一个新的Java类,用于与ChitGPT服务器通信。以下是一个简单的实现: ```java import com.