stm32 按键控制温度阈值的代码
时间: 2023-07-30 20:10:21 浏览: 311
以下是一个使用 STM32 按键控制温度阈值的示例代码。
```c
#include "stm32f10x.h"
#include "stm32f10x_gpio.h"
#include "stm32f10x_rcc.h"
#include "stm32f10x_adc.h"
#define ADC1_DR_Address ((u32)0x4001244C)
u16 ADC_ConvertedValue;
u16 ADC_Value;
u8 temp = 25; // 初始温度阈值为 25 ℃
void ADC1_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
ADC_InitTypeDef ADC_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_ADC1, ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
GPIO_Init(GPIOA, &GPIO_InitStructure);
ADC_DeInit(ADC1);
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_InitStructure.ADC_ScanConvMode = DISABLE;
ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = 1;
ADC_Init(ADC1, &ADC_InitStructure);
ADC_Cmd(ADC1, ENABLE);
ADC_ResetCalibration(ADC1);
while (ADC_GetResetCalibrationStatus(ADC1));
ADC_StartCalibration(ADC1);
while (ADC_GetCalibrationStatus(ADC1));
}
u16 Get_ADC_Value(void)
{
ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_239Cycles5);
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
while (!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC));
return ADC_GetConversionValue(ADC1);
}
int main(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
TIM_TimeBaseStructure.TIM_Period = 4999;
TIM_TimeBaseStructure.TIM_Prescaler = 7199;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 0;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC3Init(TIM2, &TIM_OCInitStructure);
TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Enable);
TIM_Cmd(TIM2, ENABLE);
ADC1_Init();
NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
TIM_ClearITPendingBit(TIM2, TIM_IT_Update);
TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);
while (1)
{
ADC_Value = Get_ADC_Value();
ADC_ConvertedValue = ADC_Value * 3300 / 0xFFF; // 将 ADC 值转换为电压值
}
}
void TIM2_IRQHandler(void)
{
if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET)
{
TIM_ClearITPendingBit(TIM2, TIM_IT_Update);
if (ADC_ConvertedValue > temp) // 当检测到温度高于阈值时,将 PWM 输出设置为 50%
{
TIM_SetCompare3(TIM2, 2500);
}
else // 当检测到温度低于阈值时,将 PWM 输出设置为 0%
{
TIM_SetCompare3(TIM2, 0);
}
if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_5) == RESET) // 当按键按下时,增加温度阈值
{
temp++;
while (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_5) == RESET);
}
if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_6) == RESET) // 当按键按下时,减少温度阈值
{
temp--;
while (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_6) == RESET);
}
}
}
```
在此示例中,我们使用 TIM2 的中断来实现 PWM 波的输出,并使用 ADC1 来检测温度。当检测到温度高于设置的阈值时,将 PWM 输出设置为 50%;当检测到温度低于阈值时,将 PWM 输出设置为 0%。同时,我们还通过按键来控制温度阈值的增加和减少。注意,这只是一个示例代码,具体的实现方式可能因应用场景的不同而有所不同。
阅读全文