%bp2.m; 例4.2 % P=[-3,2];T=[0.4,0.8]; net=newlind(P,T); %设计线性网络 y=sim(net,P); w1=net.iw{1,1},b1=net.b{1} net=newcf(minmax(P),[1],{'tansig'}); %创建前向BP网络 net.trainParam.epochs=50; %初始化训练次数 net.trainParam.goal=0.001; %初始化目标误差 net=train(net,P,T); %训练网络 W=net.iw{1,1}, B=net.b{1} Y=sim(net,P); %计算结果 pause plot(P,T,'r:') %画出目标点 hold on plot(P,Y) %画输入为横轴、输出为纵轴的曲线 plot(P,y,'c+') hold off
时间: 2024-03-02 18:49:38 浏览: 131
好的,下面是这段代码的注释:
```
% bp2.m; 例4.2
% 该脚本用于实现一个前向反馈神经网络对一组输入输出数据进行拟合
P=[-3,2]; T=[0.4,0.8]; % 设定输入数据和输出数据
net=newlind(P,T); % 创建一个线性网络
y=sim(net,P); % 对输入数据进行预测
w1=net.iw{1,1},b1=net.b{1} % 输出网络的权重和偏置
net=newcf(minmax(P),[1],{'tansig'}); % 创建一个前向BP网络,采用tansig作为激活函数
net.trainParam.epochs=50; % 设定训练次数
net.trainParam.goal=0.001; % 设定目标误差
net=train(net,P,T); % 训练网络
W=net.iw{1,1}, B=net.b{1} % 输出训练后得到的权重和偏置
Y=sim(net,P); % 对输入数据进行预测
pause
plot(P,T,'r:') % 画出目标点,用红色实线表示
hold on
plot(P,Y) % 画输入为横轴、输出为纵轴的曲线
plot(P,y,'c+') % 画出预测点,用青色加号表示
hold off % 结束图像展示
```
注释中对每行代码进行了简要解释,方便理解代码的作用和实现过程。
阅读全文