bounding box和default box呢
时间: 2023-11-11 13:06:52 浏览: 97
Bounding box和Default box也是目标检测中两个不同的概念。
Bounding box通常是指在目标检测中用于表示目标位置和大小的矩形框,也称为物体包围盒。它是目标检测算法中最基本的概念之一,用于表示图像中可能存在的目标区域,并且通常包含目标的位置、大小和朝向等信息。
Default box通常是指在单阶段目标检测算法中用于生成先验框(prior boxes)的一种方式。先验框也是一种矩形框,但是它们是通过在图像上不同的位置和尺度上设置一些预设框(即Default box),以便于在这些框内进行目标检测。这些预设框通常是一些不同形状和大小的矩形框,用于表示可能存在目标的位置和大小区域。
在单阶段目标检测算法中,先验框通常是通过在卷积特征图上不同位置处应用Default box,生成的一组固定的矩形框。然后,通过对这些先验框进行调整,以更好地适应目标的真实位置和大小,从而提高检测的准确率。
因此,Bounding box和Default box都是目标检测中用于表示目标位置和大小的矩形框,但是它们的作用和使用方式有所不同。
相关问题
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
这段代码同样使用了 Python 中的 argparse 库,用于解析命令行参数。具体来说:
- `--line-thickness` 是一个命令行参数,表示边框线的粗细。同样是一个选项参数,后面跟着参数名。
- `default=3` 表示如果没有指定这个参数的值,则默认为 3。
- `type=int` 表示这个参数的类型为整数(int)。
- `help='bounding box thickness (pixels)'` 是一个帮助信息,用于描述这个参数的作用。
因此,这段代码的作用是在命令行中添加一个 `--line-thickness` 参数,用于指定边框线的粗细。默认值为 3。
FastRCNN 实现对 VOCdevkit 文件夹内好坏香蕉目标识别+bounding box运行代码
以下是使用Fast R-CNN实现对VOCdevkit数据集中香蕉目标检测和bounding box的Python代码示例:
```python
import cv2
import numpy as np
import os
import xml.etree.ElementTree as ET
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras import models
from tensorflow.keras import optimizers
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
from sklearn.model_selection import train_test_split
# 数据集路径
data_path = 'data/VOCdevkit/'
# 类别列表
classes = ['good_banana', 'bad_banana']
# 定义模型
def create_model():
base_model = models.Sequential()
base_model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)))
base_model.add(layers.MaxPooling2D((2, 2)))
base_model.add(layers.Conv2D(64, (3, 3), activation='relu'))
base_model.add(layers.MaxPooling2D((2, 2)))
base_model.add(layers.Conv2D(128, (3, 3), activation='relu'))
base_model.add(layers.MaxPooling2D((2, 2)))
base_model.add(layers.Flatten())
base_model.add(layers.Dense(512, activation='relu'))
base_model.add(layers.Dense(len(classes), activation='softmax'))
return base_model
# 加载数据集
def load_dataset():
images = []
labels = []
for cls in classes:
cls_path = os.path.join(data_path, 'JPEGImages', cls)
for img_name in os.listdir(cls_path):
img_path = os.path.join(cls_path, img_name)
img = cv2.imread(img_path)
img = cv2.resize(img, (224, 224))
img = img / 255.0
images.append(img)
label = np.zeros(len(classes))
label[classes.index(cls)] = 1.0
labels.append(label)
return np.array(images), np.array(labels)
# 加载bounding box
def load_bbox():
bbox = {}
for cls in classes:
cls_path = os.path.join(data_path, 'Annotations', cls)
for xml_name in os.listdir(cls_path):
xml_path = os.path.join(cls_path, xml_name)
tree = ET.parse(xml_path)
root = tree.getroot()
for obj in root.findall('object'):
name = obj.find('name').text
bbox_info = obj.find('bndbox')
xmin = int(bbox_info.find('xmin').text)
ymin = int(bbox_info.find('ymin').text)
xmax = int(bbox_info.find('xmax').text)
ymax = int(bbox_info.find('ymax').text)
bbox.setdefault(cls, []).append([xmin, ymin, xmax, ymax])
return bbox
# 训练模型
def train_model():
# 加载数据
images, labels = load_dataset()
bbox = load_bbox()
# 划分训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(images, labels, test_size=0.2, random_state=42)
# 数据增强
datagen = ImageDataGenerator(
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True,
zoom_range=0.2
)
# 定义模型
model = create_model()
# 编译模型
model.compile(loss='categorical_crossentropy', optimizer=optimizers.Adam(lr=1e-4), metrics=['acc'])
# 定义回调函数
filepath = 'model.h5'
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
early_stop = EarlyStopping(monitor='val_acc', patience=5, mode='max')
# 训练模型
model.fit_generator(datagen.flow(x_train, y_train, batch_size=32),
steps_per_epoch=len(x_train) / 32,
epochs=50,
validation_data=(x_test, y_test),
callbacks=[checkpoint, early_stop])
# 保存模型
model.save('model_final.h5')
# 测试模型
def test_model():
# 加载模型
model = models.load_model('model_final.h5')
# 加载数据
images, labels = load_dataset()
bbox = load_bbox()
# 预测并绘制bounding box
for i in range(len(images)):
img = images[i]
label = labels[i]
cls = classes[np.argmax(label)]
# 预测
pred = model.predict(np.expand_dims(img, axis=0))[0]
# 绘制bounding box
if np.max(pred) > 0.5:
idx = np.argmax(pred)
x1, y1, x2, y2 = bbox[cls][i]
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(img, classes[idx], (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
# 显示图片
cv2.imshow('image', img)
if cv2.waitKey(0) & 0xff == ord('q'):
break
cv2.destroyAllWindows()
if __name__ == '__main__':
train_model()
test_model()
```
注意:在使用该代码之前,需要确保已经安装了必要的Python库,例如OpenCV、Pillow、TensorFlow等。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![.zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![docx](https://img-home.csdnimg.cn/images/20241231044901.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)