bounding box和default box呢
时间: 2023-11-11 16:06:52 浏览: 94
Bounding box和Default box也是目标检测中两个不同的概念。
Bounding box通常是指在目标检测中用于表示目标位置和大小的矩形框,也称为物体包围盒。它是目标检测算法中最基本的概念之一,用于表示图像中可能存在的目标区域,并且通常包含目标的位置、大小和朝向等信息。
Default box通常是指在单阶段目标检测算法中用于生成先验框(prior boxes)的一种方式。先验框也是一种矩形框,但是它们是通过在图像上不同的位置和尺度上设置一些预设框(即Default box),以便于在这些框内进行目标检测。这些预设框通常是一些不同形状和大小的矩形框,用于表示可能存在目标的位置和大小区域。
在单阶段目标检测算法中,先验框通常是通过在卷积特征图上不同位置处应用Default box,生成的一组固定的矩形框。然后,通过对这些先验框进行调整,以更好地适应目标的真实位置和大小,从而提高检测的准确率。
因此,Bounding box和Default box都是目标检测中用于表示目标位置和大小的矩形框,但是它们的作用和使用方式有所不同。
相关问题
FastRCNN 实现对 VOCdevkit 文件夹内好坏香蕉目标识别+bounding box运行代码
以下是使用Fast R-CNN实现对VOCdevkit数据集中香蕉目标检测和bounding box的Python代码示例:
```python
import cv2
import numpy as np
import os
import xml.etree.ElementTree as ET
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras import models
from tensorflow.keras import optimizers
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
from sklearn.model_selection import train_test_split
# 数据集路径
data_path = 'data/VOCdevkit/'
# 类别列表
classes = ['good_banana', 'bad_banana']
# 定义模型
def create_model():
base_model = models.Sequential()
base_model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)))
base_model.add(layers.MaxPooling2D((2, 2)))
base_model.add(layers.Conv2D(64, (3, 3), activation='relu'))
base_model.add(layers.MaxPooling2D((2, 2)))
base_model.add(layers.Conv2D(128, (3, 3), activation='relu'))
base_model.add(layers.MaxPooling2D((2, 2)))
base_model.add(layers.Flatten())
base_model.add(layers.Dense(512, activation='relu'))
base_model.add(layers.Dense(len(classes), activation='softmax'))
return base_model
# 加载数据集
def load_dataset():
images = []
labels = []
for cls in classes:
cls_path = os.path.join(data_path, 'JPEGImages', cls)
for img_name in os.listdir(cls_path):
img_path = os.path.join(cls_path, img_name)
img = cv2.imread(img_path)
img = cv2.resize(img, (224, 224))
img = img / 255.0
images.append(img)
label = np.zeros(len(classes))
label[classes.index(cls)] = 1.0
labels.append(label)
return np.array(images), np.array(labels)
# 加载bounding box
def load_bbox():
bbox = {}
for cls in classes:
cls_path = os.path.join(data_path, 'Annotations', cls)
for xml_name in os.listdir(cls_path):
xml_path = os.path.join(cls_path, xml_name)
tree = ET.parse(xml_path)
root = tree.getroot()
for obj in root.findall('object'):
name = obj.find('name').text
bbox_info = obj.find('bndbox')
xmin = int(bbox_info.find('xmin').text)
ymin = int(bbox_info.find('ymin').text)
xmax = int(bbox_info.find('xmax').text)
ymax = int(bbox_info.find('ymax').text)
bbox.setdefault(cls, []).append([xmin, ymin, xmax, ymax])
return bbox
# 训练模型
def train_model():
# 加载数据
images, labels = load_dataset()
bbox = load_bbox()
# 划分训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(images, labels, test_size=0.2, random_state=42)
# 数据增强
datagen = ImageDataGenerator(
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True,
zoom_range=0.2
)
# 定义模型
model = create_model()
# 编译模型
model.compile(loss='categorical_crossentropy', optimizer=optimizers.Adam(lr=1e-4), metrics=['acc'])
# 定义回调函数
filepath = 'model.h5'
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
early_stop = EarlyStopping(monitor='val_acc', patience=5, mode='max')
# 训练模型
model.fit_generator(datagen.flow(x_train, y_train, batch_size=32),
steps_per_epoch=len(x_train) / 32,
epochs=50,
validation_data=(x_test, y_test),
callbacks=[checkpoint, early_stop])
# 保存模型
model.save('model_final.h5')
# 测试模型
def test_model():
# 加载模型
model = models.load_model('model_final.h5')
# 加载数据
images, labels = load_dataset()
bbox = load_bbox()
# 预测并绘制bounding box
for i in range(len(images)):
img = images[i]
label = labels[i]
cls = classes[np.argmax(label)]
# 预测
pred = model.predict(np.expand_dims(img, axis=0))[0]
# 绘制bounding box
if np.max(pred) > 0.5:
idx = np.argmax(pred)
x1, y1, x2, y2 = bbox[cls][i]
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(img, classes[idx], (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
# 显示图片
cv2.imshow('image', img)
if cv2.waitKey(0) & 0xff == ord('q'):
break
cv2.destroyAllWindows()
if __name__ == '__main__':
train_model()
test_model()
```
注意:在使用该代码之前,需要确保已经安装了必要的Python库,例如OpenCV、Pillow、TensorFlow等。
FastRCNN 实现对 VOCdevkit 文件夹内好坏香蕉目标识别+bounding box。代码
下面是使用 Fast R-CNN 实现对 VOCdevkit 文件夹内好坏香蕉目标识别和边界框的示例代码。
首先,你需要下载并解压 VOCdevkit 数据集,然后安装 Fast R-CNN。我们假设你已经将数据集解压到了 `/path/to/VOCdevkit`,Fast R-CNN 安装在了 `/path/to/fast-rcnn`。
接下来,我们需要准备数据。我们需要将 VOCdevkit 数据集转换为 Fast R-CNN 所需的格式。可以使用以下命令来完成转换:
```
cd /path/to/fast-rcnn
./tools/voc_label.py /path/to/VOCdevkit /path/to/output/folder
```
这将会在 `/path/to/output/folder` 中生成转换后的数据。
接下来,我们需要训练模型。可以使用以下命令来训练模型:
```
./tools/train_net.py --gpu 0 --solver models/VGG16/solver.prototxt --weights data/imagenet_models/VGG16.v2.caffemodel
```
这将会使用 VGG16 模型进行训练。训练完成后,我们可以使用以下命令来进行测试:
```
./tools/test_net.py --gpu 0 --def models/VGG16/test.prototxt --net output/default/voc_2007_trainval/VGG16_faster_rcnn_final.caffemodel
```
这将会对 VOCdevkit 数据集进行测试,并输出预测结果。如果你想可视化预测结果,可以使用以下命令:
```
./tools/draw_net.py models/VGG16/test.prototxt output/default/voc_2007_trainval/VGG16_faster_rcnn_final.caffemodel output/default/voc_2007_trainval/VGG16_faster_rcnn_final.png
```
这将会生成一个模型结构图,并保存为 `VGG16_faster_rcnn_final.png`。
以上就是使用 Fast R-CNN 实现对 VOCdevkit 文件夹内好坏香蕉目标识别和边界框的示例代码。
阅读全文