C语言实现基于流的加权公平队列
时间: 2023-12-11 15:02:44 浏览: 64
以下是一个基于C语言的简单实现:
```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
// 定义流结构体
typedef struct flow {
int id; // 流ID
int weight; // 流权重
int length; // 流数据包数量
int *packet_length; // 每个数据包的长度
int *packet_time; // 每个数据包的到达时间
} flow_t;
// 定义数据包结构体
typedef struct packet {
int flow_id; // 数据包所属流ID
int packet_length; // 数据包的长度
int arrival_time; // 数据包的到达时间
} packet_t;
// 定义队列结构体
typedef struct queue {
int length; // 队列数据包数量
int max_length; // 队列最大长度
packet_t *packets; // 数据包数组
} queue_t;
// 定义比较函数
int compare(const void *p1, const void *p2) {
packet_t *packet1 = (packet_t *)p1;
packet_t *packet2 = (packet_t *)p2;
return packet1->arrival_time - packet2->arrival_time;
}
// 计算流传输速率上限
int calculate_rate(int weight, int max_weight, int max_rate) {
return weight * max_rate / max_weight;
}
// 初始化流
void init_flow(flow_t *flow, int id, int weight, int length, int max_packet_length, int max_rate) {
flow->id = id;
flow->weight = weight;
flow->length = length;
flow->packet_length = (int *)malloc(length * sizeof(int));
flow->packet_time = (int *)malloc(length * sizeof(int));
int i;
for (i = 0; i < length; i++) {
flow->packet_length[i] = rand() % max_packet_length + 1;
if (i == 0) {
flow->packet_time[i] = 0;
} else {
flow->packet_time[i] = flow->packet_time[i-1] + rand() % max_rate + 1;
}
}
}
// 初始化队列
void init_queue(queue_t *queue, int max_length) {
queue->length = 0;
queue->max_length = max_length;
queue->packets = (packet_t *)malloc(max_length * sizeof(packet_t));
}
// 添加数据包到队列
void add_packet_to_queue(queue_t *queue, packet_t *packet) {
if (queue->length < queue->max_length) {
queue->packets[queue->length] = *packet;
queue->length++;
}
}
// 从队列中取出数据包
void get_packet_from_queue(queue_t *queue, int index, packet_t *packet) {
*packet = queue->packets[index];
int i;
for (i = index; i < queue->length - 1; i++) {
queue->packets[i] = queue->packets[i+1];
}
queue->length--;
}
// WFQ算法
void wfq(flow_t *flows, int num_flows, int max_weight, int max_rate, int max_packet_length, int max_queue_length) {
// 初始化队列
queue_t *queues = (queue_t *)malloc(num_flows * sizeof(queue_t));
int i;
for (i = 0; i < num_flows; i++) {
init_queue(&queues[i], max_queue_length);
}
// 初始化数据包
packet_t *packets = (packet_t *)malloc(num_flows * max_queue_length * sizeof(packet_t));
int num_packets = 0;
for (i = 0; i < num_flows; i++) {
int j;
for (j = 0; j < flows[i].length; j++) {
packet_t packet;
packet.flow_id = i;
packet.packet_length = flows[i].packet_length[j];
packet.arrival_time = flows[i].packet_time[j];
packets[num_packets] = packet;
num_packets++;
}
}
// 按到达时间排序
qsort(packets, num_packets, sizeof(packet_t), compare);
// WFQ算法主循环
int current_time = 0;
while (num_packets > 0) {
// 计算每个流的传输速率上限
int max_rate_per_flow[num_flows];
int sum_weight = 0;
for (i = 0; i < num_flows; i++) {
sum_weight += flows[i].weight;
}
for (i = 0; i < num_flows; i++) {
max_rate_per_flow[i] = calculate_rate(flows[i].weight, sum_weight, max_rate);
}
// 计算每个流的虚拟时刻
int virtual_time[num_flows];
for (i = 0; i < num_flows; i++) {
virtual_time[i] = current_time - flows[i].packet_time[0];
if (virtual_time[i] < 0) {
virtual_time[i] = 0;
}
virtual_time[i] = virtual_time[i] * max_rate_per_flow[i] / max_rate;
}
// 选择队列并公平分配数据包
for (i = 0; i < num_flows; i++) {
if (queues[i].length > 0) {
int j;
for (j = 0; j < queues[i].length; j++) {
virtual_time[i] += queues[i].packets[j].packet_length * max_rate_per_flow[i] / max_rate;
}
}
}
int min_virtual_time = virtual_time[0];
int min_flow_id = 0;
for (i = 1; i < num_flows; i++) {
if (virtual_time[i] < min_virtual_time) {
min_virtual_time = virtual_time[i];
min_flow_id = i;
}
}
packet_t packet;
get_packet_from_queue(&queues[min_flow_id], 0, &packet);
printf("Transmit packet from Flow %d, Packet Length %d, Arrival Time %d, Transmit Time %d\n", packet.flow_id, packet.packet_length, packet.arrival_time, current_time);
flows[packet.flow_id].packet_length[0] -= packet.packet_length;
if (flows[packet.flow_id].packet_length[0] == 0) {
flows[packet.flow_id].length--;
if (flows[packet.flow_id].length > 0) {
flows[packet.flow_id].packet_length++;
flows[packet.flow_id].packet_time++;
}
}
// 将新到达的数据包加入队列
int j = 0;
while (j < num_packets && packets[j].arrival_time <= current_time) {
add_packet_to_queue(&queues[packets[j].flow_id], &packets[j]);
j++;
}
for (i = j; i < num_packets; i++) {
packets[i-j] = packets[i];
}
num_packets -= j;
// 更新时间
current_time++;
}
// 释放内存
for (i = 0; i < num_flows; i++) {
free(queues[i].packets);
}
free(queues);
free(packets);
}
int main() {
srand(time(NULL));
int num_flows = 5;
flow_t flows[num_flows];
init_flow(&flows[0], 0, 1, 10, 1000, 10000);
init_flow(&flows[1], 1, 2, 5, 2000, 10000);
init_flow(&flows[2], 2, 3, 8, 1500, 10000);
init_flow(&flows[3], 3, 4, 6, 2500, 10000);
init_flow(&flows[4], 4, 5, 7, 1800, 10000);
wfq(flows, num_flows, 15, 10000, 3000, 100);
return 0;
}
```
以上是一个简单的实现,实际应用中还需要考虑更多的情况和细节,比如数据包丢失、优化算法效率等问题。
阅读全文