eemdpython实现
时间: 2023-07-29 12:14:48 浏览: 122
eemd是一种基于本地平均分解的信号处理方法,主要用于非线性和非平稳信号的分解和分析。下面是一个使用Python实现eemd的示例代码:
```python
import numpy as np
from scipy.interpolate import interp1d
def emd(x):
max_imfs = int(np.floor(np.log2(x.size))) - 1
imfs = np.zeros((max_imfs, x.size))
for i in range(max_imfs):
imf = x.copy()
for j in range(i):
imf -= imfs[j]
sd = np.inf
while sd > 0.1:
max_min = np.diff(np.sign(np.diff(imf))).nonzero()[0] + 1
if max_min.size < 3:
break
pmax, pmin = max_min[::2], max_min[1::2]
max_env = interp1d(pmax, imf[pmax], kind='cubic')(np.arange(x.size))
min_env = interp1d(pmin, imf[pmin], kind='cubic')(np.arange(x.size))
mean_env = (max_env + min_env) / 2
imf_old, imf = imf, imf - mean_env
sd = np.sum((imf_old - imf) ** 2) / np.sum(imf_old ** 2)
imfs[i] = imf
return imfs[:i+1]
def eemd(x, num_ensembles=100):
emd_ensemble = np.zeros((num_ensembles, x.size))
for i in range(num_ensembles):
noise = np.random.randn(x.size)
imfs = emd(x + noise)
emd_ensemble[i] = imfs[-1]
return emd_ensemble.mean(axis=0)
```
其中,emd函数用于计算x的本征模态函数(imf),eemd函数则是对x进行多次重构,得到多个emf,并返回它们的平均值。
阅读全文