python使用kd树找到距离p点最近的n个点

时间: 2023-10-08 09:06:53 浏览: 114
要使用kd树找到距离p点最近的n个点,可以使用以下步骤: 1. 构建kd树,将所有点插入到kd树中。 2. 从根节点开始,递归遍历kd树。在每个节点,根据当前节点的分裂维度和分裂值,将查询点p与节点的距离计算出来。 3. 如果当前节点的距离比当前找到的n个最近点中最远的点还要远,那么可以直接返回,不再继续递归。 4. 否则,将当前节点加入到候选最近点集合中,如果候选最近点集合的大小大于n,则需要删除最远的点。 5. 继续递归遍历当前节点的子树,直到遍历完所有的子树。 6. 最后,候选最近点集合中的所有点就是距离p点最近的n个点。 下面是一个使用kd树查找距离p点最近的n个点的Python实现: ```python import heapq import numpy as np class KDTree: def __init__(self, data): self.data = data self.n = data.shape[0] self.k = data.shape[1] self.tree = self.build_tree(0, self.n, 0) def build_tree(self, left, right, depth): if left >= right: return None mid = (left + right) // 2 axis = depth % self.k sorted_idx = np.argsort(self.data[:, axis]) left_idx = np.where(sorted_idx[:mid] == sorted_idx[mid])[0] right_idx = np.where(sorted_idx[mid + 1:] == sorted_idx[mid])[0] + mid + 1 node = { "idx": sorted_idx[mid], "axis": axis, "left": self.build_tree(left + len(left_idx), right - len(right_idx), depth + 1), "right": self.build_tree(left, left + len(left_idx), depth + 1) } return node def search_knn(self, p, n): candidate = [] heapq.heapify(candidate) self.search(self.tree, p, n, candidate) return [self.data[idx] for _, idx in heapq.nsmallest(n, candidate)] def search(self, node, p, n, candidate): if node is None: return dist = np.linalg.norm(p - self.data[node["idx"]]) if len(candidate) < n or dist < -candidate[0][0]: heapq.heappush(candidate, (-dist, node["idx"])) if len(candidate) > n: heapq.heappop(candidate) axis = node["axis"] if p[axis] < self.data[node["idx"], axis]: self.search(node["left"], p, n, candidate) else: self.search(node["right"], p, n, candidate) if len(candidate) < n or abs(p[axis] - self.data[node["idx"], axis]) < -candidate[0][0]: if p[axis] < self.data[node["idx"], axis]: self.search(node["right"], p, n, candidate) else: self.search(node["left"], p, n, candidate) ``` 上面的代码中,`KDTree`类用于构建kd树和查找最近的n个点。`build_tree`方法用于递归构建kd树。`search_knn`方法用于查找距离p点最近的n个点,其中使用了一个小根堆来维护当前找到的最近的n个点。`search`方法用于递归查找最近的n个点。
阅读全文

相关推荐

最新推荐

recommend-type

python射线法判断一个点在图形区域内外

Python射线法是一种判断二维平面上的点是否位于闭合图形内部的方法,它基于图形的边界线和从该点出发的任意直线(通常选择水平或垂直线)进行判断。如果这条直线与图形的边界线相交的次数为奇数,则点在图形内部;若...
recommend-type

python实现根据给定坐标点生成多边形mask的例子

总结一下,Python实现根据给定坐标点生成多边形mask的关键步骤包括: 1. 加载顶点坐标数据。 2. 创建一个全零的mask图像。 3. 组合x和y坐标为适合`cv2`函数的二维数组。 4. 使用`cv2.polylines`绘制多边形轮廓。 5. ...
recommend-type

python实现简单点对点(p2p)聊天

Python 实现的简单点对点(P2P)聊天系统是一种基于多线程技术的网络通信应用,允许两个或多个用户之间直接交换消息,而无需通过中心服务器作为中介。在这个系统中,每个参与者既是发送者也是接收者,形成了一个分散...
recommend-type

python画图--输出指定像素点的颜色值方法

本文将详细介绍如何使用Python的PIL(Pillow)库来实现这个功能。 PIL(Python Imaging Library)是Python的一个图像处理库,它提供了丰富的图像处理功能。在Python 3中,PIL已经进化为Pillow库,它保持了PIL的接口...
recommend-type

python-opencv获取二值图像轮廓及中心点坐标的代码

在Python中,我们可以使用`cv2.imread()`函数读取图像,通过指定第三个参数为0来读取灰度图像,即二值图像的一种形式: ```python groundtruth = cv2.imread(groundtruth_path)[:, :, 0] ``` 接下来,我们需要找到...
recommend-type

降低成本的oracle11g内网安装依赖-pdksh-5.2.14-1.i386.rpm下载

资源摘要信息: "Oracle数据库系统作为广泛使用的商业数据库管理系统,其安装过程较为复杂,涉及到多个预安装依赖包的配置。本资源提供了Oracle 11g数据库内网安装所必需的预安装依赖包——pdksh-5.2.14-1.i386.rpm,这是一种基于UNIX系统使用的命令行解释器,即Public Domain Korn Shell。对于Oracle数据库的安装,pdksh是必须的预安装组件,其作用是为Oracle安装脚本提供命令解释的环境。" Oracle数据库的安装与配置是一个复杂的过程,需要诸多组件的协同工作。在Linux环境下,尤其在内网环境中安装Oracle数据库时,可能会因为缺少某些关键的依赖包而导致安装失败。pdksh是一个自由软件版本的Korn Shell,它基于Bourne Shell,同时引入了C Shell的一些特性。由于Oracle数据库对于Shell脚本的兼容性和可靠性有较高要求,因此pdksh便成为了Oracle安装过程中不可或缺的一部分。 在进行Oracle 11g的安装时,如果没有安装pdksh,安装程序可能会报错或者无法继续。因此,确保pdksh已经被正确安装在系统上是安装Oracle的第一步。根据描述,这个特定的pdksh版本——5.2.14,是一个32位(i386架构)的rpm包,适用于基于Red Hat的Linux发行版,如CentOS、RHEL等。 运维人员在进行Oracle数据库安装时,通常需要下载并安装多个依赖包。在描述中提到,下载此依赖包的价格已被“打下来”,暗示了市场上其他来源可能提供的费用较高,这可能是因为Oracle数据库的软件和依赖包通常价格不菲。为了降低IT成本,本文档提供了实际可行的、经过测试确认可用的资源下载途径。 需要注意的是,仅仅拥有pdksh-5.2.14-1.i386.rpm文件是不够的,还要确保系统中已经安装了正确的依赖包管理工具,并且系统的软件仓库配置正确,以便于安装rpm包。在安装rpm包时,通常需要管理员权限,因此可能需要使用sudo或以root用户身份来执行安装命令。 除了pdksh之外,Oracle 11g安装可能还需要其他依赖,如系统库文件、开发工具等。如果有其他依赖需求,可以参考描述中提供的信息,点击相关者的头像,访问其提供的其他资源列表,以找到所需的相关依赖包。 总结来说,pdksh-5.2.14-1.i386.rpm包是Oracle 11g数据库内网安装过程中的关键依赖之一,它的存在对于运行Oracle安装脚本是必不可少的。当运维人员面对Oracle数据库安装时,应当检查并确保所有必需的依赖组件都已准备就绪,而本文档提供的资源将有助于降低安装成本,并确保安装过程的顺利进行。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

云计算术语全面掌握:从1+X样卷A卷中提炼精华

![云计算术语全面掌握:从1+X样卷A卷中提炼精华](https://ask.qcloudimg.com/http-save/yehe-1475574/696453895d391e6b0f0e27455ef79c8b.jpeg) # 摘要 本文全面解析了云计算的基础概念,并深入理解了云计算服务模型,包括IaaS、PaaS和SaaS的区别及其应用。文章详细探讨了云计算部署模型,包括公有云、私有云及混合云的架构优势和选择策略。同时,本文也实践应用了云计算的关键技术,如虚拟化、容器技术以及云安全策略。此外,文章探讨了云服务管理与监控的工具、最佳实践、性能监控以及合规性和可持续发展问题。最后,本文通
recommend-type

. 索读取⼀幅图像,让该图像拼接⾃身图像,分别⽤⽔ 平和垂直 2 种。要求运⾏结果弹窗以⾃⼰的名字全拼命名。

在Python中,我们可以使用PIL(Pillow)库来处理图像并实现您所描述的功能。首先,你需要安装PIL库,如果还没有安装,可以使用pip install pillow命令。以下是简单的步骤来实现这个功能: 1. 打开图像文件: ```python from PIL import Image def open_image_and_display(image_path): img = Image.open(image_path) ``` 2. 创建一个新的空白图像,用于存放拼接后的图像: ```python def create_concat_image(img, directi
recommend-type

Java基础实验教程Lab1解析

资源摘要信息:"Java Lab1实践教程" 本次提供的资源是一个名为"Lab1"的Java实验室项目,旨在帮助学习者通过实践来加深对Java编程语言的理解。从给定的文件信息来看,该项目的名称为"Lab1",它的描述同样是"Lab1",这表明这是一个基础的实验室练习,可能是用于介绍Java语言或设置一个用于后续实践的开发环境。文件列表中的"Lab1-master"表明这是一个主版本的压缩包,包含了多个文件和可能的子目录结构,用于确保完整性和便于版本控制。 ### Java知识点详细说明 #### 1. Java语言概述 Java是一种高级的、面向对象的编程语言,被广泛用于企业级应用开发。Java具有跨平台的特性,即“一次编写,到处运行”,这意味着Java程序可以在支持Java虚拟机(JVM)的任何操作系统上执行。 #### 2. Java开发环境搭建 对于一个Java实验室项目,首先需要了解如何搭建Java开发环境。通常包括以下步骤: - 安装Java开发工具包(JDK)。 - 配置环境变量(JAVA_HOME, PATH)以确保可以在命令行中使用javac和java命令。 - 使用集成开发环境(IDE),如IntelliJ IDEA, Eclipse或NetBeans,这些工具可以简化编码、调试和项目管理过程。 #### 3. Java基础语法 在Lab1中,学习者可能需要掌握一些Java的基础语法,例如: - 数据类型(基本类型和引用类型)。 - 变量的声明和初始化。 - 控制流语句,包括if-else, for, while和switch-case。 - 方法的定义和调用。 - 数组的使用。 #### 4. 面向对象编程概念 Java是一种面向对象的编程语言,Lab1项目可能会涉及到面向对象编程的基础概念,包括: - 类(Class)和对象(Object)的定义。 - 封装、继承和多态性的实现。 - 构造方法(Constructor)的作用和使用。 - 访问修饰符(如private, public)的使用,以及它们对类成员访问控制的影响。 #### 5. Java标准库使用 Java拥有一个庞大的标准库,Lab1可能会教授学习者如何使用其中的一些基础类和接口,例如: - 常用的java.lang包下的类,如String, Math等。 - 集合框架(Collections Framework),例如List, Set, Map等接口和实现类。 - 异常处理机制,包括try-catch块和异常类层次结构。 #### 6. 实验室项目实践 实践是学习编程最有效的方式之一。Lab1项目可能包含以下类型的实际练习: - 创建一个简单的Java程序,比如一个控制台计算器。 - 实现基本的数据结构和算法,如链表、排序和搜索。 - 解决特定的问题,比如输入处理和输出格式化。 #### 7. 项目组织和版本控制 "Lab1-master"文件名暗示该项目可能采用Git作为版本控制系统。在项目实践中,学习者可能需要了解: - 如何使用Git命令进行版本控制。 - 分支(Branch)的概念和合并(Merge)的策略。 - 创建和管理Pull Request来协作和审查代码。 #### 8. 代码规范和文档 良好的代码规范和文档对于保持代码的可读性和可维护性至关重要。Lab1项目可能会强调: - 遵循Java编码标准,例如命名约定、注释习惯。 - 编写文档注释(Javadoc),以便自动生成API文档。 通过Lab1项目的实践和指导,学习者能够逐步掌握Java编程语言的核心知识,并为后续更深入的学习和项目开发打下坚实的基础。