首页
高光谱图像目标检测算法国内外现状
高光谱图像目标检测算法国内外现状
时间: 2023-03-13 16:55:01
浏览: 174
高光谱图像目标检测算法是一种通过分析高光谱图像来识别感兴趣目标的技术。目前,国内外研究者已经取得了一定的进展,提出了许多改进算法,比如基于深度学习的算法,基于视觉的算法等。这些算法已经得到了广泛的应用,取得了一定的成效。
阅读全文
相关推荐
高光谱图像目标检测研究进展
目标检测是高光谱遥感领域一个重要研究方向,其在矿物勘探和国防侦查等领域都有着广泛的应用。简明、系统地介绍了高光谱图像目标检测中的一些关键算法及其在实际应用中存在的问题,并对未来发展方向进行了展望。
基于支持向量数据描述的高光谱图像目标检测
高光谱图像目标检测具有重要的理论研究价值和应用前景,是遥感信息处理领域中的一个热点课题。当前大部分检测算法需要设置一个合适的判决阈值,这个阈值是由人工设置或利用目标与背景信息进行计算得到的。实际中对...
人工智能-目标检测-基于光学相关识别的高光谱图像目标检测算法研究.pdf
人工智能-目标检测-基于光学相关识别的高光谱图像目标检测算法研究.pdf
基于混沌粒子群优化投影寻踪的高光谱图像目标检测
针对高光谱图像的非监督目标检测问题,提出了一种基于混沌粒子群优化(PSO)投影寻踪(PP)的检测方法。混沌PSO可加快PP过程,得到更精确的最佳投影方向。利用自适应波段选择方法进行高光谱图像降维。依据对异常分布...
基于嵌套窗口的高光谱图像目标检测 (2009年)
针对经典 RX检测算法所存在的窗口分析方式的不足,提出一种基于嵌套窗口分析的高光谱图像小目标检测算法,并将这种嵌套方式应用到线性 RX、非线性核特征向量空间分解( KEST)算法之中,对不同窗口方式的检测算法以及非...
基于约束稀疏表示的二元假设模型用于高光谱图像目标检测
在分析和探讨高光谱图像目标检测领域中的最新研究时,这篇论文提出的“基于约束稀疏表示的二元假设模型用于高光谱图像目标检测”引起了广泛关注。高光谱图像(HSI)由于其丰富的空间和光谱信息,为检测目标提供了新...
基于角度距离的分层背景分离方法用于高光谱图像目标检测
传统的用于高光谱图像(HSI)目标检测(TD)的检测器仅在处理HSI一次后输出结果。 然而,仅使用一次先前的目标信息是不够的,因为这会导致目标提取的准确性或背景的不干净分离。 在本文中,目标像素是通过分层的背景...
电信设备-基于双机通信的高光谱图像目标检测系统.zip
《基于双机通信的高光谱图像目标检测系统》 在现代电信设备中,高光谱成像技术已经成为一种重要的信息获取手段,特别是在目标检测、环境监测、遥感等领域发挥着重要作用。本系统的设计和实现,是将双机通信与高光谱...
高光谱图像飞机目标检测研究
笔者将经过最小噪声分离后的高光谱图像进行基于集合顶点的端元提取,并结合基于多光谱的匹配滤波法、最小能量约束法、光谱角制图法、正交子空间投影法等检测方法,对基于飞机的自动检测进行了深入地研究,并对各检测...
基于逐波段处理的高光谱图像实时目标检测
高光谱遥感图像实时目标检测对于实际应用具有十分重要的意义。针对目标和背景光谱均已知的高光谱遥感图像实时目标检测的问题,在正交子空间投影算法的基础上,利用矩阵分析理论,推导出逐波段处理的实时正交子空间投影...
一种基于单似然检验的高光谱图像小目标检测器
针对背景和目标的先验光谱特征未知的条件,给出一种基于单似然检验的高光谱图像小目标检测器。小目标相对于背景的低概率性使得高光谱图像数据对目标光谱信号的矩特征几乎不施加约束,可在最大熵条件下将广义似然比检验...
【目标检测】基于matlab树结构编码高光谱图像TGRS目标检测【含Matlab源码 3983期】.md
图像识别:表盘识别、车道线识别、车牌识别、答题卡识别、电器识别、跌倒检测、动物识别、发票识别、服装识别、汉字识别、红绿灯识别、火灾检测、疾病分类、交通标志牌识别、口罩识别、裂缝识别、目标跟踪、疲劳检测...
【目标检测】基于matlab树结构编码高光谱图像TGRS目标检测【含Matlab仿真 3983期】.zip
CSDN Matlab武动乾坤上传的资料均有对应的仿真结果图,仿真结果图均是完整代码运行得出,完整代码亲测可用,适合小白; 1、完整的代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 ...
新型高光谱图像快速实时目标检测与分类方法
针对逐像元处理的高光谱图像实时线性约束最小方差(LCMV)检测与分类算法计算量大、运行速度慢的问题,在LCMV检测与分类算法的基础上,提出了两种逐行的实时LCMV目标检测与分类算法。首先对LCMV算法进行了因果化,...
高光谱图像读取matlab.rar_matlab 高光谱_matlab高光谱_高光谱 图像_高光谱图像_高光谱读取
这种丰富的光谱信息使得高光谱图像在目标识别、分类和监测等方面具有巨大的潜力。 MATLAB是一款强大的数值计算和数据可视化软件,其灵活的编程环境和丰富的图像处理工具箱使得处理高光谱图像变得相对简单。以下是从...
基于数学形态学的高光谱图像组合核目标检测
针对非线性混合的高光谱图像目标检测问题,在核信号空间正交投影法(KSSP)的基础上,提出了一种光谱和空间信息结合的组合核信号空间正交投影方法(CKSSP)。分别基于边缘序和像元距离为序尺度函数的导出序将灰度...
基于扩展数学形态学的高光谱图像异常检测
提出了一种新型的基于扩展数学形态和光谱相似度测量的高光谱图像异常检测方法。在目标与背景未知的情况下,同时利用光谱和空间信息实现目标的定位与检测,实现高光谱遥感数据的目标检测。通过扩展的膨胀和腐蚀操作实现...
【数据驱动】复杂网络的数据驱动控制附Matlab代码.rar
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
(源码)基于Qt框架的智能家居管理系统.zip
# 基于Qt框架的智能家居管理系统 ## 项目简介 本项目是一个基于Qt框架开发的智能家居管理系统,旨在提供一个集成的平台来监控和管理家庭环境中的各种传感器数据,如温度、湿度、烟雾状态、红外状态等。系统通过图形界面实时展示数据,并提供警报功能以应对异常情况。 ## 项目的主要特性和功能 1. 实时数据监控通过Qt和Qwt库创建的曲线图,实时显示温度和湿度数据。 2. 多传感器支持支持温度、湿度、烟雾、红外等多种传感器的监控。 3. 警报系统当传感器数据超过设定阈值时,系统会触发警报,并通过界面显示警告信息。 4. 用户交互提供滑动条和复选框,允许用户调整警报阈值或关闭警报。 5. 网络通信通过TCP套接字与服务器通信,获取和发送传感器数据及网络拓扑信息。 6. 蓝牙数据读取支持通过蓝牙读取传感器数据并更新界面显示。 ## 安装使用步骤 1. 环境准备 确保已安装Qt开发环境。 安装Qwt库以支持曲线图功能。
CSDN会员
开通CSDN年卡参与万元壕礼抽奖
海量
VIP免费资源
千本
正版电子书
商城
会员专享价
千门
课程&专栏
全年可省5,000元
立即开通
全年可省5,000元
立即开通
最新推荐
基于卷积神经网络的高光谱图像深度特征提取与分类.docx
CNN利用卷积层和池化层来挖掘HSI的非线性、判别性和不变性特征,这些特征有助于图像分类和目标检测。CNN的多层次结构使其能够在高层抽象出更具有鲁棒性的特征。 本文提出了一种结合L2正则化和dropout策略的CNN方法...
利用PCA降维方法处理高光谱图像(matlab)
在高光谱图像处理中,PCA被广泛应用于解决数据的高维性和相关性问题,它能够将原始的高维数据转换为一组线性无关的低维特征向量,同时尽可能保留数据的主要信息。 在MATLAB中,PCA可以通过内置函数`pca()`实现。该...
原创高光谱图像处理-xd.doc
高光谱图像处理是遥感和图像分析领域中的一个重要分支,它涉及到多波段光谱信息的采集和分析。在MATLAB环境中,处理高光谱图像通常包括数据的读取、预处理、特征提取和图像可视化等多个步骤。以下是对给定文件中介绍...
国内外主要光学、SAR、高光谱卫星基本参数汇总
1、全球主要高光谱遥感卫星参数 情况汇总: 主要汇总参数:卫星 国家 发射时间 高光谱传感器 空间分辨率 波段数 波段范围 幅宽 2、全国主要光学遥感卫星参数 情况汇总: 主要汇总参数:传感器类型 原始全色...
近红外光谱无创血糖检测技术研究
近红外光谱无创血糖检测技术研究是糖尿病检测领域中的一种创新技术,其主要目标是开发一种无创、高速、准确的血糖检测方法,解决现有的有创检测方法给患者带来的痛苦和不便。 糖尿病是一种内分泌疾病,全球患病人数...
深入浅出:自定义 Grunt 任务的实践指南
资源摘要信息:"Grunt 是一个基于 Node.js 的自动化任务运行器,它极大地简化了重复性任务的管理。在前端开发中,Grunt 经常用于压缩文件、运行测试、编译 LESS/SASS、优化图片等。本文档提供了自定义 Grunt 任务的示例,对于希望深入掌握 Grunt 或者已经开始使用 Grunt 但需要扩展其功能的开发者来说,这些示例非常有帮助。" ### 知识点详细说明 #### 1. 创建和加载任务 在 Grunt 中,任务是由 JavaScript 对象表示的配置块,可以包含任务名称、操作和选项。每个任务可以通过 `grunt.registerTask(taskName, [description, ] fn)` 来注册。例如,一个简单的任务可以这样定义: ```javascript grunt.registerTask('example', function() { grunt.log.writeln('This is an example task.'); }); ``` 加载外部任务,可以通过 `grunt.loadNpmTasks('grunt-contrib-jshint')` 来实现,这通常用在安装了新的插件后。 #### 2. 访问 CLI 选项 Grunt 支持命令行接口(CLI)选项。在任务中,可以通过 `grunt.option('option')` 来访问命令行传递的选项。 ```javascript grunt.registerTask('printOptions', function() { grunt.log.writeln('The watch option is ' + grunt.option('watch')); }); ``` #### 3. 访问和修改配置选项 Grunt 的配置存储在 `grunt.config` 对象中。可以通过 `grunt.config.get('configName')` 获取配置值,通过 `grunt.config.set('configName', value)` 设置配置值。 ```javascript grunt.registerTask('printConfig', function() { grunt.log.writeln('The banner config is ' + grunt.config.get('banner')); }); ``` #### 4. 使用 Grunt 日志 Grunt 提供了一套日志系统,可以输出不同级别的信息。`grunt.log` 提供了 `writeln`、`write`、`ok`、`error`、`warn` 等方法。 ```javascript grunt.registerTask('logExample', function() { grunt.log.writeln('This is a log example.'); grunt.log.ok('This is OK.'); }); ``` #### 5. 使用目标 Grunt 的配置可以包含多个目标(targets),这样可以为不同的环境或文件设置不同的任务配置。在任务函数中,可以通过 `this.args` 获取当前目标的名称。 ```javascript grunt.initConfig({ jshint: { options: { curly: true, }, files: ['Gruntfile.js'], my_target: { options: { eqeqeq: true, }, }, }, }); grunt.registerTask('showTarget', function() { grunt.log.writeln('Current target is: ' + this.args[0]); }); ``` #### 6. 异步任务 Grunt 支持异步任务,这对于处理文件读写或网络请求等异步操作非常重要。异步任务可以通过传递一个回调函数给任务函数来实现。若任务是一个异步操作,必须调用回调函数以告知 Grunt 任务何时完成。 ```javascript grunt.registerTask('asyncTask', function() { var done = this.async(); // 必须调用 this.async() 以允许异步任务。 setTimeout(function() { grunt.log.writeln('This is an async task.'); done(); // 任务完成时调用 done()。 }, 1000); }); ``` ### Grunt插件和Gruntfile配置 Grunt 的强大之处在于其插件生态系统。通过 `npm` 安装插件后,需要在 `Gruntfile.js` 中配置这些插件,才能在任务中使用它们。Gruntfile 通常包括任务注册、任务配置、加载外部任务三大部分。 - 任务注册:使用 `grunt.registerTask` 方法。 - 任务配置:使用 `grunt.initConfig` 方法。 - 加载外部任务:使用 `grunt.loadNpmTasks` 方法。 ### 结论 通过上述的示例和说明,我们可以了解到创建一个自定义的 Grunt 任务需要哪些步骤以及需要掌握哪些基础概念。自定义任务的创建对于利用 Grunt 来自动化项目中的各种操作是非常重要的,它可以帮助开发者提高工作效率并保持代码的一致性和标准化。在掌握这些基础知识后,开发者可以更进一步地探索 Grunt 的高级特性,例如子任务、组合任务等,从而实现更加复杂和强大的自动化流程。
管理建模和仿真的文件
管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
数据可视化在缺失数据识别中的作用
![缺失值处理(Missing Value Imputation)](https://img-blog.csdnimg.cn/20190521154527414.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3l1bmxpbnpp,size_16,color_FFFFFF,t_70) # 1. 数据可视化基础与重要性 在数据科学的世界里,数据可视化是将数据转化为图形和图表的实践过程,使得复杂的数据集可以通过直观的视觉形式来传达信息。它
ABB机器人在自动化生产线中是如何进行路径规划和任务执行的?请结合实际应用案例分析。
ABB机器人在自动化生产线中的应用广泛,其核心在于精确的路径规划和任务执行。路径规划是指机器人根据预定的目标位置和工作要求,计算出最优的移动轨迹。任务执行则涉及根据路径规划结果,控制机器人关节和运动部件精确地按照轨迹移动,完成诸如焊接、装配、搬运等任务。 参考资源链接:[ABB-机器人介绍.ppt](https://wenku.csdn.net/doc/7xfddv60ge?spm=1055.2569.3001.10343) ABB机器人能够通过其先进的控制器和编程软件进行精确的路径规划。控制器通常使用专门的算法,如A*算法或者基于时间最优的轨迹规划技术,以确保机器人运动的平滑性和效率。此
网络物理突变工具的多点路径规划实现与分析
资源摘要信息:"多点路径规划matlab代码-mutationdocker:变异码头工人" ### 知识点概述 #### 多点路径规划与网络物理突变工具 多点路径规划指的是在网络环境下,对多个路径点进行规划的算法或工具。该工具可能被应用于物流、运输、通信等领域,以优化路径和提升效率。网络物理系统(CPS,Cyber-Physical System)结合了计算机网络和物理过程,其中网络物理突变工具是指能够修改或影响网络物理系统中的软件代码的功能,特别是在自动驾驶、智能电网、工业自动化等应用中。 #### 变异与Mutator软件工具 变异(Mutation)在软件测试领域是指故意对程序代码进行小的改动,以此来检测程序测试用例的有效性。mutator软件工具是一种自动化的工具,它能够在编程文件上执行这些变异操作。在代码质量保证和测试覆盖率的评估中,变异分析是提高软件可靠性的有效方法。 #### Mutationdocker Mutationdocker是一个配置为运行mutator的虚拟机环境。虚拟机环境允许用户在隔离的环境中运行软件,无需对现有系统进行改变,从而保证了系统的稳定性和安全性。Mutationdocker的使用为开发者提供了一个安全的测试平台,可以在不影响主系统的情况下进行变异测试。 #### 工具的五个阶段 网络物理突变工具按照以下五个阶段进行操作: 1. **安装工具**:用户需要下载并构建工具,具体操作步骤可能包括解压文件、安装依赖库等。 2. **生成突变体**:使用`./mutator`命令,顺序执行`./runconfiguration`(如果存在更改的config.txt文件)、`make`和工具执行。这个阶段涉及到对原始程序代码的变异生成。 3. **突变编译**:该步骤可能需要编译运行环境的配置,依赖于项目具体情况,可能需要执行`compilerun.bash`脚本。 4. **突变执行**:通过`runsave.bash`脚本执行变异后的代码。这个脚本的路径可能需要根据项目进行相应的调整。 5. **结果分析**:利用MATLAB脚本对变异过程中的结果进行分析,可能需要参考文档中的文件夹结构部分,以正确引用和处理数据。 #### 系统开源 标签“系统开源”表明该项目是一个开放源代码的系统,意味着它被设计为可供任何人自由使用、修改和分发。开源项目通常可以促进协作、透明性以及通过社区反馈来提高代码质量。 #### 文件名称列表 文件名称列表中提到的`mutationdocker-master`可能是指项目源代码的仓库名,表明这是一个主分支,用户可以从中获取最新的项目代码和文件。 ### 详细知识点 1. **多点路径规划**是网络物理系统中的一项重要技术,它需要考虑多个节点或路径点在物理网络中的分布,以及如何高效地规划它们之间的路径,以满足例如时间、成本、距离等优化目标。 2. **突变测试**是软件测试的一种技术,通过改变程序中的一小部分来生成变异体,这些变异体用于测试软件的测试用例集是否能够检测到这些人为的错误。如果测试用例集能够正确地识别出大多数或全部的变异体,那么可以认为测试用例集是有效的。 3. **Mutator软件工具**的使用可以自动化变异测试的过程,包括变异体的生成、编译、执行和结果分析。使用此类工具可以显著提高测试效率,尤其是在大型项目中。 4. **Mutationdocker的使用**提供了一个简化的环境,允许开发者无需复杂的配置就可以进行变异测试。它可能包括了必要的依赖项和工具链,以便快速开始变异测试。 5. **软件的五个操作阶段**为用户提供了清晰的指导,从安装到结果分析,每个步骤都有详细的说明,这有助于减少用户在使用过程中的困惑,并确保操作的正确性。 6. **开源系统的特性**鼓励了代码共享、共同开发和创新,同时也意味着用户可以通过社区的力量不断改进软件工具,这也是开源项目可持续发展的核心。 通过以上描述和知识点的展开,我们可以了解到多点路径规划matlab代码-mutationdocker:变异码头工人是一个涵盖了网络物理系统、变异测试、自动化软件工具以及开源精神的综合性项目。它通过一系列操作流程为用户提供了一个高效和稳定的代码测试环境,并且以开源的形式促进了软件测试技术的共享和创新。