GCN DDPG 代码
时间: 2024-03-02 17:27:34 浏览: 60
CNN+DDPG代码,主要实现了倒立摆的控制
以下是使用 PyTorch 实现的 GCN-DDPG 代码示例:
首先导入所需的库:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import random
import math
from collections import namedtuple
from torch_geometric.nn import GCNConv
from torch_geometric.data import Data
```
定义 Actor 和 Critic 的神经网络模型:
```python
class Actor(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size):
super(Actor, self).__init__()
self.fc1 = nn.Linear(num_inputs, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, num_actions)
def forward(self, state):
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
x = torch.tanh(self.fc3(x))
return x
class Critic(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size):
super(Critic, self).__init__()
self.fc1 = nn.Linear(num_inputs + num_actions, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, 1)
def forward(self, state, action):
x = torch.cat([state, action], 1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
```
定义 GCN-DDPG 的智能体:
```python
class Agent(object):
def __init__(self, env, num_hidden=64, gamma=0.99, tau=0.001, lr=0.001, buffer_size=10000, batch_size=64):
self.env = env
self.observation_space = env.observation_space
self.action_space = env.action_space
self.num_inputs = self.observation_space.shape[0]
self.num_actions = self.action_space.shape[0]
self.hidden_size = num_hidden
self.gamma = gamma
self.tau = tau
self.lr = lr
self.buffer_size = buffer_size
self.batch_size = batch_size
self.memory = []
self.timestep = 0
self.actor = Actor(self.num_inputs, self.num_actions, self.hidden_size).to(device)
self.actor_target = Actor(self.num_inputs, self.num_actions, self.hidden_size).to(device)
self.critic = Critic(self.num_inputs, self.num_actions, self.hidden_size).to(device)
self.critic_target = Critic(self.num_inputs, self.num_actions, self.hidden_size).to(device)
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=self.lr)
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=self.lr)
def select_action(self, state):
state = torch.from_numpy(state).float().to(device)
with torch.no_grad():
action = self.actor(state).cpu().data.numpy()
return action
def store_transition(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
if len(self.memory) > self.buffer_size:
self.memory.pop(0)
def update(self):
if len(self.memory) < self.batch_size:
return
batch = random.sample(self.memory, self.batch_size)
state_batch = torch.FloatTensor([transition[0] for transition in batch]).to(device)
action_batch = torch.FloatTensor([transition[1] for transition in batch]).to(device)
reward_batch = torch.FloatTensor([transition[2] for transition in batch]).to(device)
next_state_batch = torch.FloatTensor([transition[3] for transition in batch]).to(device)
done_batch = torch.FloatTensor([transition[4] for transition in batch]).to(device)
# Update Critic
next_action_batch = self.actor_target(next_state_batch)
q_next = self.critic_target(next_state_batch, next_action_batch)
q_target = reward_batch + self.gamma * q_next * (1 - done_batch)
q_current = self.critic(state_batch, action_batch)
critic_loss = F.mse_loss(q_current, q_target)
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# Update Actor
action_pred = self.actor(state_batch)
actor_loss = -self.critic(state_batch, action_pred).mean()
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# Soft Update of Target Networks
for target_param, param in zip(self.actor_target.parameters(), self.actor.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
for target_param, param in zip(self.critic_target.parameters(), self.critic.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
```
定义 GCN-DDPG 的环境:
```python
class GraphEnvironment(object):
def __init__(self, num_nodes=10, num_edges=20, obs_dim=2):
self.num_nodes = num_nodes
self.num_edges = num_edges
self.obs_dim = obs_dim
self.adj_matrix = self._generate_adj_matrix()
self.observation_space = np.zeros((self.num_nodes, self.obs_dim))
self.action_space = np.zeros((self.num_nodes, self.obs_dim))
def _generate_adj_matrix(self):
edge_list = []
while len(edge_list) < self.num_edges:
src = random.randint(0, self.num_nodes - 1)
dst = random.randint(0, self.num_nodes - 1)
if src != dst and (src, dst) not in edge_list and (dst, src) not in edge_list:
edge_list.append((src, dst))
adj_matrix = np.zeros((self.num_nodes, self.num_nodes))
for src, dst in edge_list:
adj_matrix[src][dst] = 1
adj_matrix[dst][src] = 1
return adj_matrix
def reset(self):
self.observation_space = np.random.rand(self.num_nodes, self.obs_dim)
self.action_space = np.zeros((self.num_nodes, self.obs_dim))
return self.observation_space
def step(self, action):
self.action_space = action
reward = 0
for i in range(self.num_nodes):
neighbors = np.where(self.adj_matrix[i] == 1)[0]
for j in neighbors:
reward += np.linalg.norm(self.observation_space[i] - self.observation_space[j]) - np.linalg.norm(self.action_space[i] - self.action_space[j])
self.observation_space += self.action_space
return self.observation_space, reward, False, {}
```
定义训练过程:
```python
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
env = GraphEnvironment()
agent = Agent(env, num_hidden=64, gamma=0.99, tau=0.001, lr=0.001, buffer_size=10000, batch_size=64)
num_episodes = 1000
for i_episode in range(num_episodes):
state = env.reset()
episode_reward = 0
for t in range(100):
action = agent.select_action(state)
next_state, reward, done, _ = env.step(action)
agent.store_transition(state, action, reward, next_state, done)
agent.update()
state = next_state
episode_reward += reward
if done:
break
print("Episode: {}, Reward: {}, Timestep: {}".format(i_episode + 1, episode_reward, agent.timestep))
```
这是一个简单的 GCN-DDPG 实现,仅供参考。具体实现可能需要根据不同的问题和数据进行调整。
阅读全文