DDPG结合GCN做预测的代码

时间: 2023-11-15 18:06:03 浏览: 39
DDPG(Deep Deterministic Policy Gradient)结合 GCN(Graph Convolutional Network)可以用于处理图数据的预测任务。以下是一个简单的示例代码,展示了如何使用 PyTorch 实现 DDPG-GCN 模型: ``` python import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import random from collections import deque from torch_geometric.nn import GCNConv # 创建 DDGP-GCN 的 Actor 类 class Actor(nn.Module): def __init__(self, state_dim, action_dim, hidden_dim): super(Actor, self).__init__() self.fc1 = nn.Linear(state_dim, hidden_dim) self.gcn = GCNConv(hidden_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, action_dim) def forward(self, state, adj): x = F.relu(self.fc1(state)) x = self.gcn(x, adj) x = F.relu(x) x = self.fc2(x) x = torch.tanh(x) return x # 创建 DDPG-GCN 的 Critic 类 class Critic(nn.Module): def __init__(self, state_dim, action_dim, hidden_dim): super(Critic, self).__init__() self.fc1 = nn.Linear(state_dim + action_dim, hidden_dim) self.gcn1 = GCNConv(hidden_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, 1) def forward(self, state, action, adj): x = torch.cat([state, action], 1) x = F.relu(self.fc1(x)) x = self.gcn1(x, adj) x = F.relu(x) x = self.fc2(x) return x # 创建 DDPG-GCN 的智能体类 class Agent: def __init__(self, state_dim, action_dim, hidden_dim, gamma=0.99, tau=1e-2, lr_actor=1e-3, lr_critic=1e-3, buffer_size=100000, batch_size=64): self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.actor = Actor(state_dim, action_dim, hidden_dim).to(self.device) self.actor_target = Actor(state_dim, action_dim, hidden_dim).to(self.device) self.critic = Critic(state_dim, action_dim, hidden_dim).to(self.device) self.critic_target = Critic(state_dim, action_dim, hidden_dim).to(self.device) self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=lr_actor) self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=lr_critic) self.buffer = deque(maxlen=buffer_size) self.batch_size = batch_size self.gamma = gamma self.tau = tau # 策略网络(Actor)选择动作 def select_action(self, state, adj): state = torch.FloatTensor(state).to(self.device) adj = torch.FloatTensor(adj).to(self.device) self.actor.eval() with torch.no_grad(): action = self.actor(state, adj).cpu().data.numpy() self.actor.train() return action # 存储(状态,动作,奖励,下一个状态)元组到缓存中 def remember(self, state, action, reward, next_state, adj): state = torch.FloatTensor(state).to(self.device) action = torch.FloatTensor(action).to(self.device) reward = torch.FloatTensor([reward]).to(self.device) next_state = torch.FloatTensor(next_state).to(self.device) adj = torch.FloatTensor(adj).to(self.device) self.buffer.append((state, action, reward, next_state, adj)) # 从缓存中随机抽样,进行训练 def train(self): if len(self.buffer) < self.batch_size: return # 从缓存中随机抽样 batch = random.sample(self.buffer, self.batch_size) state, action, reward, next_state, adj = zip(*batch) state = torch.cat(state) action = torch.cat(action) reward = torch.cat(reward) next_state = torch.cat(next_state) adj = torch.cat(adj) # 计算 Q 目标值 next_action = self.actor_target(next_state, adj) q_target = reward + self.gamma * self.critic_target(next_state, next_action, adj).detach() q_target = q_target.to(self.device) # 更新 Critic 网络 q_value = self.critic(state, action, adj) critic_loss = F.mse_loss(q_value, q_target) self.critic_optimizer.zero_grad() critic_loss.backward() self.critic_optimizer.step() # 更新 Actor 网络 actor_loss = -self.critic(state, self.actor(state, adj), adj).mean() self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() # 更新目标网络(Target Network) for target_param, param in zip(self.actor_target.parameters(), self.actor.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) for target_param, param in zip(self.critic_target.parameters(), self.critic.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) # 保存模型 def save(self, filename): torch.save({ 'actor_state_dict': self.actor.state_dict(), 'critic_state_dict': self.critic.state_dict(), 'actor_optimizer_state_dict': self.actor_optimizer.state_dict(), 'critic_optimizer_state_dict': self.critic_optimizer.state_dict(), }, filename) # 加载模型 def load(self, filename): checkpoint = torch.load(filename) self.actor.load_state_dict(checkpoint['actor_state_dict']) self.critic.load_state_dict(checkpoint['critic_state_dict']) self.actor_optimizer.load_state_dict(checkpoint['actor_optimizer_state_dict']) self.critic_optimizer.load_state_dict(checkpoint['critic_optimizer_state_dict']) ``` 在上述代码中,我们首先定义了一个 GCN 网络,然后将其嵌入到 DDPG 智能体的 Actor 和 Critic 网络中。我们还定义了智能体的存储缓存、训练函数以及保存/加载函数。最后,我们可以使用以下代码来训练 DDPG-GCN 模型: ``` python agent = Agent(state_dim, action_dim, hidden_dim) for episode in range(num_episodes): state = env.reset() for step in range(num_steps): action = agent.select_action(state, adj) next_state, reward, done, _ = env.step(action) agent.remember(state, action, reward, next_state, adj) agent.train() if done: break state = next_state agent.save('ddpg_gcn.pt') ``` 在训练过程中,我们首先使用 `select_action` 函数从智能体的 Actor 网络中选择动作。我们使用 `remember` 函数将(状态,动作,奖励,下一个状态)元组存储到智能体的缓存中。然后,我们使用 `train` 函数从缓存中随机抽样并进行训练。最后,我们使用 `save` 函数保存模型。

相关推荐

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

matlab建立计算力学课程的笔记和文件.zip

matlab建立计算力学课程的笔记和文件.zip
recommend-type

FT-Prog-v3.12.38.643-FTD USB 工作模式设定及eprom读写

FT_Prog_v3.12.38.643--FTD USB 工作模式设定及eprom读写
recommend-type

matlab基于RRT和人工势场法混合算法的路径规划.zip

matlab基于RRT和人工势场法混合算法的路径规划.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依