gcn-gru预测代码
时间: 2023-10-29 13:08:07 浏览: 377
以下是使用GCN-GRU模型进行预测的代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import GCNConv, GRUConv
class GCNGRU(nn.Module):
def __init__(self, num_features, num_classes):
super(GCNGRU, self).__init__()
self.conv1 = GCNConv(num_features, 64)
self.conv2 = GCNConv(64, 32)
self.gru = GRUConv(32, 32)
self.fc = nn.Linear(32, num_classes)
def forward(self, x, edge_index):
x = F.relu(self.conv1(x, edge_index))
x = F.relu(self.conv2(x, edge_index))
x = self.gru(x, edge_index)
x = self.fc(x)
return F.log_softmax(x, dim=1)
```
其中,`num_features`表示输入特征的维度,`num_classes`表示输出类别的数量。模型中使用了两层GCN层和一层GRU层,最后通过全连接层输出预测结果。
阅读全文