gcn轴承寿命预测python代码
时间: 2024-01-28 11:01:48 浏览: 250
GCN(Graph Convolutional Networks)是一种用于图数据的深度学习模型。在轴承寿命预测中,我们可以使用GCN来对轴承的运行状态进行建模,并通过训练模型来预测轴承的寿命。下面是一个基于Python的GCN轴承寿命预测代码的示例:
```python
# 导入所需的库
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Adam
# 定义GCN模型
class GCN(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(GCN, self).__init__()
self.hidden_dim = hidden_dim
self.gcn1 = GraphConvolution(input_dim, hidden_dim)
self.gcn2 = GraphConvolution(hidden_dim, output_dim)
def forward(self, x, adj):
x = F.relu(self.gcn1(x, adj))
x = self.gcn2(x, adj)
return x
# 定义图卷积层
class GraphConvolution(nn.Module):
def __init__(self, input_dim, output_dim):
super(GraphConvolution, self).__init__()
self.weight = nn.Parameter(torch.FloatTensor(input_dim, output_dim))
self.bias = nn.Parameter(torch.FloatTensor(output_dim))
def forward(self, x, adj):
support = torch.mm(x, self.weight)
output = torch.mm(adj, support)
output += self.bias
return output
# 加载轴承数据并进行预处理
def load_data():
# 代码省略,根据实际情况加载轴承数据并进行预处理
return adj, features, labels
# 计算准确率
def accuracy(pred, labels):
correct = torch.sum(pred == labels)
acc = correct.item() / len(labels)
return acc
# 设置超参数
epochs = 100
lr = 0.01
hidden_dim = 64
# 加载数据
adj, features, labels = load_data()
# 转为torch.Tensor
adj = torch.from_numpy(adj).float()
features = torch.from_numpy(features).float()
labels = torch.from_numpy(labels).long()
# 创建模型和优化器
model = GCN(features.shape[1], hidden_dim, labels.max().item() + 1)
optimizer = Adam(model.parameters(), lr=lr)
# 训练模型
for epoch in range(epochs):
model.train()
optimizer.zero_grad()
output = model(features, adj)
loss = F.cross_entropy(output, labels)
loss.backward()
optimizer.step()
model.eval()
with torch.no_grad():
pred = torch.argmax(output, dim=1)
acc = accuracy(pred, labels)
print('Epoch: {:03d}, Loss: {:.4f}, Accuracy: {:.4f}'.format(epoch, loss.item(), acc))
```
以上代码是一个基本的轴承寿命预测的GCN模型示例。在实际应用中,我们需要加载轴承数据(包括邻接矩阵、特征矩阵和标签矩阵),并根据实际情况进行数据预处理(如归一化、划分训练集和测试集等)。然后,我们可以使用GCN模型进行训练,并在每个epoch计算损失和准确率。最终可以得到一个用于轴承寿命预测的GCN模型。
阅读全文