Multi-Head Attention具体
时间: 2023-09-16 16:09:34 浏览: 60
A Supervised Multi-Head Self-Attention Network for Nested NE.pdf
Multi-Head Attention是一种用于自然语言处理任务中的注意力机制,它能够有效地捕捉输入序列中不同位置之间的关联性,同时也能够处理输入序列中的长距离依赖关系。
Multi-Head Attention的基本思想是,将输入序列分别映射到多个低维空间上,然后对这些映射后的向量进行注意力计算,最后将多个注意力计算的结果进行拼接并映射回原始空间。这一过程可以表示为以下公式:
$$
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1, head_2, ..., head_h)W^O
$$
其中,$Q$、$K$、$V$分别表示输入的查询、键、值向量,$h$表示头数,$head_i$表示第$i$个头的注意力计算结果,$W^O$表示输出映射矩阵。每个头的注意力计算可以表示为以下公式:
$$
\text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)
$$
其中,$W_i^Q$、$W_i^K$、$W_i^V$分别表示第$i$个头的查询、键、值映射矩阵,$\text{Attention}$表示标准的点积注意力机制。
通过使用Multi-Head Attention,我们能够捕捉到输入序列中不同位置之间的关联性,并且能够处理输入序列中的长距离依赖关系,从而提高自然语言处理任务的预测准确率。
阅读全文