图论matlab代码整理
时间: 2023-11-25 20:05:47 浏览: 35
图论算法及其MATLAB程序代码_个人整理学习资料.rar
以下是一些常见的图论算法的 MATLAB 代码:
1. Dijkstra 算法
```matlab
function [dist, path] = dijkstra(A, s, t)
% A: 邻接矩阵
% s: 起点
% t: 终点
% dist: 最短距离
% path: 最短路径
n = size(A, 1);
d = inf(1, n); % 初始化距离
d(s) = 0; % 起点到自己的距离为 0
p = 1:n; % 未访问的点集合
path = cell(1, n); % 记录路径
while ~isempty(p)
[~, u] = min(d(p));
u = p(u);
p(p == u) = []; % 从未访问的点集合中移除 u
if u == t % 如果到达终点,则直接返回
dist = d(t);
path{s} = s;
for i = 2:length(path)
path{i} = [path{i-1}, path{i}];
end
path = path{t};
return;
end
for v = find(A(u,:))
alt = d(u) + A(u,v);
if alt < d(v)
d(v) = alt;
path{v} = [path{u}, v];
end
end
end
dist = [];
path = [];
```
2. 最小生成树 (Prim 算法)
```matlab
function [T, cost] = prim(A)
% A: 邻接矩阵
% T: 最小生成树
% cost: 最小生成树的权重之和
n = size(A, 1);
T = false(n);
cost = 0;
d = inf(1, n);
d(1) = 0;
p = 1:n;
while ~isempty(p)
[~, u] = min(d(p));
u = p(u);
p(p == u) = [];
if d(u) == inf % 如果存在无法到达的节点,则直接返回
T = [];
cost = inf;
return;
end
if u ~= 1
T(u, d(u)) = true;
T(d(u), u) = true;
cost = cost + A(u, d(u));
end
for v = p
if A(u,v) < d(v)
d(v) = A(u,v);
d(v) = u;
end
end
end
```
3. 最短路径 (Floyd 算法)
```matlab
function D = floyd(A)
% A: 邻接矩阵
% D: 最短路径矩阵
n = size(A, 1);
D = A;
for k = 1:n
for i = 1:n
for j = 1:n
D(i,j) = min(D(i,j), D(i,k)+D(k,j));
end
end
end
```
4. 拓扑排序
```matlab
function order = topsort(A)
% A: 邻接矩阵
% order: 拓扑排序结果
n = size(A, 1);
indegree = sum(A, 1);
order = [];
while true
nodes = find(indegree == 0);
if isempty(nodes)
break;
end
order = [order, nodes];
indegree(nodes) = inf;
for u = nodes
for v = find(A(u,:))
indegree(v) = indegree(v) - 1;
end
end
end
if length(order) < n
order = [];
end
```
5. 最大流 (Ford-Fulkerson 算法)
```matlab
function [f, G] = maxflow(A, s, t)
% A: 邻接矩阵
% s: 源点
% t: 汇点
% f: 最大流量
% G: 剩余网络
n = size(A, 1);
G = A;
f = 0;
while true
[P, c] = findpath(G, s, t); % 寻找增广路径
if isempty(P)
break;
end
f = f + c;
for i = 1:length(P)-1
u = P(i);
v = P(i+1);
G(u,v) = G(u,v) - c;
G(v,u) = G(v,u) + c;
end
end
function [P, c] = findpath(G, s, t) % 寻找增广路径
n = size(G, 1);
P = [];
c = inf;
visited = false(1, n);
visited(s) = true;
stack = s;
while ~isempty(stack)
u = stack(end);
stack(end) = [];
for v = find(G(u,:))
if ~visited(v) && G(u,v) > 0
visited(v) = true;
P = [P, v];
c = min(c, G(u,v));
if v == t
return;
end
stack = [stack, v];
end
end
end
P = [];
c = 0;
end
end
```
阅读全文