使用LM优化算法来优化双目相机外参数,举出一个实例用C++语言一步一步地实现
时间: 2023-07-14 07:12:00 浏览: 262
LM(Levenberg-Marquardt)算法是一种非线性优化算法,常用于解决最小二乘问题。在双目相机中,我们可以使用LM算法来优化外参数(即相机的位置和姿态),使得双目相机能够更准确地获取深度信息。
下面是一个使用C++语言实现LM算法优化双目相机外参数的示例:
1. 定义优化问题
```
// 定义优化问题,即最小化误差平方和
class StereoOptimizationProblem : public ceres::SizedCostFunction<1, 6>
{
public:
StereoOptimizationProblem(const double observed_x, const double observed_y, const double* const intrinsic_matrix, const double* const left_observed_point, const double* const right_observed_point):
observed_x_(observed_x),
observed_y_(observed_y),
intrinsic_matrix_(intrinsic_matrix),
left_observed_point_(left_observed_point),
right_observed_point_(right_observed_point)
{}
virtual bool Evaluate(double const* const* parameters, double* residuals, double** jacobians) const
{
// 获取外参数
const double* const rvec = parameters[0];
const double* const tvec = parameters[1];
// 计算左右相机的投影矩阵
cv::Mat R, t, R1, R2, P1, P2, Q;
cv::Rodrigues(cv::Mat(1, 3, CV_64FC1, (void*)rvec), R);
t = cv::Mat(3, 1, CV_64FC1, (void*)tvec);
cv::stereoRectify(intrinsic_matrix_, cv::Mat(), intrinsic_matrix_, cv::Mat(), cv::Size(640, 480), R, t, R1, R2, P1, P2, Q);
// 计算左右相机中对应的点
cv::Mat left_point = cv::Mat(3, 1, CV_64FC1, (void*)left_observed_point_);
cv::Mat right_point = cv::Mat(3, 1, CV_64FC1, (void*)right_observed_point_);
cv::Mat left_projected_point = P1 * left_point;
cv::Mat right_projected_point = P2 * right_point;
// 计算重投影误差
double u, v;
u = left_projected_point.at<double>(0) / left_projected_point.at<double>(2);
v = left_projected_point.at<double>(1) / left_projected_point.at<double>(2);
residuals[0] = u - observed_x_;
residuals[1] = v - observed_y_;
// 计算雅可比矩阵
if (jacobians != NULL) {
double fx = intrinsic_matrix_[0];
double fy = intrinsic_matrix_[4];
double cx = intrinsic_matrix_[2];
double cy = intrinsic_matrix_[5];
double x = left_point.at<double>(0);
double y = left_point.at<double>(1);
double z = left_point.at<double>(2);
double x_prime = right_point.at<double>(0);
double y_prime = right_point.at<double>(1);
double z_prime = right_point.at<double>(2);
double u_x = fx / z;
double u_y = 0;
double u_z = -fx * x / (z * z);
double u_x_prime = fx / z_prime;
double u_y_prime = 0;
double u_z_prime = -fx * x_prime / (z_prime * z_prime);
double v_x = 0;
double v_y = fy / z;
double v_z = -fy * y / (z * z);
double v_x_prime = 0;
double v_y_prime = fy / z_prime;
double v_z_prime = -fy * y_prime / (z_prime * z_prime);
jacobians[0][0] = u_x * R1.at<double>(0, 0) + u_y * R1.at<double>(0, 1) + u_z * R1.at<double>(0, 2);
jacobians[0][1] = v_x * R1.at<double>(0, 0) + v_y * R1.at<double>(0, 1) + v_z * R1.at<double>(0, 2);
jacobians[0][2] = u_x_prime * R2.at<double>(0, 0) + u_y_prime * R2.at<double>(0, 1) + u_z_prime * R2.at<double>(0, 2);
jacobians[0][3] = v_x_prime * R2.at<double>(0, 0) + v_y_prime * R2.at<double>(0, 1) + v_z_prime * R2.at<double>(0, 2);
jacobians[1][0] = u_x * R1.at<double>(1, 0) + u_y * R1.at<double>(1, 1) + u_z * R1.at<double>(1, 2);
jacobians[1][1] = v_x * R1.at<double>(1, 0) + v_y * R1.at<double>(1, 1) + v_z * R1.at<double>(1, 2);
jacobians[1][2] = u_x_prime * R2.at<double>(1, 0) + u_y_prime * R2.at<double>(1, 1) + u_z_prime * R2.at<double>(1, 2);
jacobians[1][3] = v_x_prime * R2.at<double>(1, 0) + v_y_prime * R2.at<double>(1, 1) + v_z_prime * R2.at<double>(1, 2);
jacobians[2][0] = u_x * R1.at<double>(2, 0) + u_y * R1.at<double>(2, 1) + u_z * R1.at<double>(2, 2);
jacobians[2][1] = v_x * R1.at<double>(2, 0) + v_y * R1.at<double>(2, 1) + v_z * R1.at<double>(2, 2);
jacobians[2][2] = u_x_prime * R2.at<double>(2, 0) + u_y_prime * R2.at<double>(2, 1) + u_z_prime * R2.at<double>(2, 2);
jacobians[2][3] = v_x_prime * R2.at<double>(2, 0) + v_y_prime * R2.at<double>(2, 1) + v_z_prime * R2.at<double>(2, 2);
jacobians[0][4] = jacobians[0][5] = jacobians[1][4] = jacobians[1][5] = jacobians[2][4] = jacobians[2][5] = 0;
}
return true;
}
private:
const double observed_x_;
const double observed_y_;
const double* const intrinsic_matrix_;
const double* const left_observed_point_;
const double* const right_observed_point_;
};
```
2. 定义优化器
```
// 定义优化器,使用LM算法进行优化
ceres::Problem problem;
ceres::Solver::Options options;
ceres::Solver::Summary summary;
options.minimizer_progress_to_stdout = true;
options.max_num_iterations = 100;
options.linear_solver_type = ceres::DENSE_SCHUR;
options.minimizer_type = ceres::TRUST_REGION;
options.trust_region_strategy_type = ceres::LEVENBERG_MARQUARDT;
// 添加观测点和参数
double intrinsic_matrix[9] = { 1000, 0, 320, 0, 1000, 240, 0, 0, 1 };
double left_observed_point[3] = { 1, 2, 3 };
double right_observed_point[3] = { 4, 5, 6 };
double rvec[3] = { 0, 0, 0 };
double tvec[3] = { 0, 0, 0 };
problem.AddResidualBlock(new StereoOptimizationProblem(320, 240, intrinsic_matrix, left_observed_point, right_observed_point), NULL, rvec, tvec);
// 进行优化
ceres::Solve(options, &problem, &summary);
std::cout << summary.FullReport() << std::endl;
// 输出优化结果
std::cout << "rvec: " << rvec[0] << ", " << rvec[1] << ", " << rvec[2] << std::endl;
std::cout << "tvec: " << tvec[0] << ", " << tvec[1] << ", " << tvec[2] << std::endl;
```
在上述代码中,我们使用ceres库来实现LM算法的优化过程。首先,我们定义了一个StereoOptimizationProblem类,用于定义优化问题。然后,我们定义了一个ceres::Problem对象,并向其中添加了观测点和参数。最后,我们使用ceres::Solve函数进行优化,并输出优化结果。
需要注意的是,在实际应用中,我们需要根据具体的问题进行修改和优化。
阅读全文