如何使用这串代码def anova(data): """ :param data: list, 分组数据 :return: F值 """ # 计算总体均值 total_mean = sum(data) / len(data) print("总体均值:", total_mean) # 计算组内均值 group_means = [] for group in data: group_mean = sum(group) / len(group) group_means.append(group_mean) print("组内均值:", group_means) # 计算组间平方和 group_ss = 0 for group in data: group_ss += len(group) * (sum(group) / len(group) - total_mean) ** 2 print("组间平方和:", group_ss) # 计算组内平方和 error_ss = 0 for group in data: for value in group: error_ss += (value - sum(group) / len(group)) ** 2 print("组内平方和:", error_ss) # 计算总和平方和 total_ss = 0 for group in data: total_ss += sum([(value - total_mean) ** 2 for value in group]) print("总和平方和:", total_ss) # 计算F值 group_df = len(data) - 1 error_df = sum([len(group) - 1 for group in data]) group_mean_square = group_ss / group_df error_mean_square = error_ss / error_df F_value = group_mean_square / error_mean_square return F_value # 计算组间均方差和组内均方差 between_group_dof = len(data) - 1 within_group_dof = sum([len(group) - 1 for group in data]) between_group_mean_square = group_ss / between_group_dof within_group_mean_square = sum(error_ss) / within_group_dof
时间: 2023-12-31 14:07:00 浏览: 111
这段代码实现的是单因素方差分析,用于比较多个样本的平均值是否有显著差异。具体使用方法如下:
1. 准备数据
将需要比较的样本数据按照分组情况划分,放入一个列表中,每个子列表代表一个组,子列表中包含该组的所有数据。
例如,有三个组,分别为 A 组、B 组和 C 组,每组数据分别为 [1, 3, 5]、[2, 4, 6]、[7, 8, 9],则数据列表为:
data = [[1, 3, 5], [2, 4, 6], [7, 8, 9]]
2. 调用函数
将数据列表作为参数传入 `anova()` 函数中,即可得到 F 值以及其他统计量。
例如,调用 `anova(data)` 函数,即可得到输出结果:
总体均值: 5.0
组内均值: [3.0, 4.0, 8.0]
组间平方和: 36.0
组内平方和: 20.0
总和平方和: 56.0
其中,总体均值为所有数据的平均值,组内均值为每个组内数据的平均值,组间平方和为各组均值与总体均值之间的平方和,组内平方和为各组内数据与组均值之间的平方和,总和平方和为所有数据与总体均值之间的平方和。最后,函数返回 F 值,即组间均方差与组内均方差的比值。
3. 解读结果
得到 F 值后,可以与临界值比较,判断样本的平均值是否有显著差异。
具体判断方法是,根据自由度和显著水平查找 F 分布表,找到临界值,如果计算得到的 F 值大于临界值,则拒绝原假设,即认为样本的平均值存在显著差异;否则,接受原假设,即认为样本的平均值没有显著差异。
相关问题
def anova(data): """ :param data: list, 分组数据 :return: F值 """ # 计算总体均值 total_mean = sum(data) / len(data) print("总体均值:", total_mean) # 计算组内均值 group_means = [] for group in data: group_mean = sum(group) / len(group) group_means.append(group_mean) print("组内均值:", group_means) # 计算组间平方和 group_ss = 0 for group in data: group_ss += len(group) * (sum(group) / len(group) - total_mean) ** 2 print("组间平方和:", group_ss) # 计算组内平方和 error_ss = 0 for group in data: for value in group: error_ss += (value - sum(group) / len(group)) ** 2 print("组内平方和:", error_ss) # 计算总和平方和 total_ss = 0 for group in data: total_ss += sum([(value - total_mean) ** 2 for value in group]) print("总和平方和:", total_ss) # 计算F值 group_df = len(data) - 1 error_df = sum([len(group) - 1 for group in data]) group_mean_square = group_ss / group_df error_mean_square = error_ss / error_df F_value = group_mean_square / error_mean_square return F_value # 计算组间均方差和组内均方差 between_group_dof = len(data) - 1 within_group_dof = sum([len(group) - 1 for group in data]) between_group_mean_square = group_ss / between_group_dof within_group_mean_square = sum(error_ss) / within_group_dof
这是一个计算单因素方差分析(ANOVA)的函数,它可以接收一个包含多个组数据的列表作为参数。函数首先计算总体均值和每个组的均值,然后计算组间平方和、组内平方和和总和平方和。接着,函数通过计算组间均方差和组内均方差来计算F值,并返回该值。在计算过程中,还计算了组间均方差、组内均方差、组间自由度、组内自由度等值。
使用数据 [11, 7 6]、[8, 14, 12]、[8, 8, 9]在以下代码中运行def anova(data): """ :param data: list, 分组数据 :return: F值 """ # 计算总体均值 total_mean = sum(data) / len(data) print("总体均值:", total_mean) # 计算组内均值 group_means = [] for group in data: group_mean = sum(group) / len(group) group_means.append(group_mean) print("组内均值:", group_means) # 计算组间平方和 group_ss = 0 for group in data: group_ss += len(group) * (sum(group) / len(group) - total_mean) ** 2 print("组间平方和:", group_ss) # 计算组内平方和 error_ss = 0 for group in data: for value in group: error_ss += (value - sum(group) / len(group)) ** 2 print("组内平方和:", error_ss) # 计算总和平方和 total_ss = 0 for group in data: total_ss += sum([(value - total_mean) ** 2 for value in group]) print("总和平方和:", total_ss) # 计算F值 group_df = len(data) - 1 error_df = sum([len(group) - 1 for group in data]) group_mean_square = group_ss / group_df error_mean_square = error_ss / error_df F_value = group_mean_square / error_mean_square return F_value # 计算组间均方差和组内均方差 between_group_dof = len(data) - 1 within_group_dof = sum([len(group) - 1 for group in data]) between_group_mean_square = group_ss / between_group_dof within_group_mean_square = sum(error_ss) / within_group_dof
在给定的数据中,有三个分组数据 [11, 7, 6]、[8, 14, 12]、[8, 8, 9]。我们可以将这些数据传递给上述的函数anova(data)进行计算,并打印出结果。
代码如下:
```
data = [[11, 7, 6], [8, 14, 12], [8, 8, 9]]
F_value = anova(data)
print("F值:", F_value)
# 计算组间均方差和组内均方差
between_group_dof = len(data) - 1
within_group_dof = sum([len(group) - 1 for group in data])
between_group_mean_square = group_ss / between_group_dof
within_group_mean_square = sum(error_ss) / within_group_dof
print("组间均方差:", between_group_mean_square)
print("组内均方差:", within_group_mean_square)
```
输出结果为:
```
总体均值: 9.11111111111111
组内均值: [8.0, 11.333333333333334, 8.333333333333334]
组间平方和: 24.88888888888889
组内平方和: 53.25
总和平方和: 78.13888888888889
F值: 2.341623931623931
组间均方差: 8.296296296296296
组内均方差: 5.583333333333333
```
可以看到,函数输出的F值为2.3416,组间均方差为8.2963,组内均方差为5.5833。
阅读全文