for i = 1:size(data_test,1) %提取所有被试 所有条件 第i个时间点的数据? %data_anova sub * cond data_anova = squeeze(data_test(i,:,2,2,:)); %% select the data at time point i [325 3 2 2 21] %注意 在使用anova_rm函数时 要保证函数在当前路径下 或者set path中 %此函数只能做单因素重复测量方差分析 %要求输入的数据组织形式是 被试为行 条件为列,off关闭弹窗 %输出变量p中的第一个值是条件的主效应 %table是方差分析的表 [p, table] = anova_rm(data_anova,'off'); %% perform repeated measures ANOVA %汇总每次统计下的p值? P_anova(i) = p(1); %% save the data from ANOVA end
时间: 2024-03-30 18:35:15 浏览: 124
CNN-Planar-Data-for-ML:卷积神经网络-具有一个隐藏层的平面数据分类
这段MATLAB代码实现了对多个被试、多个条件和多个时间点的数据进行重复测量方差分析,并汇总每次统计下的p值。
具体实现过程如下:
1. 通过循环遍历所有时间点,使用“squeeze”函数从原始数据中提取出第i个时间点的数据,得到一个尺寸为[被试数,条件数]的数据矩阵。
2. 使用“anova_rm”函数对该数据矩阵进行重复测量方差分析,得到条件的主效应和方差分析表。
3. 将每次统计下的条件主效应的p值存储在P_anova向量中。
需要注意的是,使用“anova_rm”函数进行方差分析时,要保证该函数在当前路径下或者已经添加到MATLAB的搜索路径中。另外,输入的数据组织形式应为被试为行、条件为列的数据矩阵,且该函数只能进行单因素重复测量方差分析。
阅读全文